INVESTIGATION OF VIBRATIONS OF LAYERED ELEMENTS OF AGRICULTURAL MACHINES

Authors

  • Dr. Jūratė Ragulskienė Kaunas University of Technology
  • Dr. Arvydas Pauliukas Vytautas Magnus University
  • Petras Paškevičius Company “Vaivora”, Kaunas
  • Prof. Dr. Rimas Maskeliūnas Vilnius Gediminas Technical University
  • Vytautas Maskeliūnas Vilnius Gediminas Technical University
  • Anatolii Korpach National Transport University
  • Dr. Liutauras Ragulskis Vytautas Magnus University

Keywords:

Layered material, agricultural machines, case of the machine, finite elements, eigenmodes.

Abstract

Layered materials are used as cases of some types of agricultural machines and devices. They have an advantage in the transmission and suppression of some types of vibrations in the process of operation of those machines. In this paper a layered beam type structure is investigated. It is assumed that layers are of two types: 1) of the beam type and 2) of the elastic body type. Usually, the lower and upper layers are of beam type and the internal layer is of elastic body type. Finite element models of the layer of beam type as well as of the layer of elastic body type are developed and described in the paper. Based on them finite element of a layered beam is obtained. Eigenmodes of the beam of this type are calculated and investigated. The presented results are applicable in the process of design of elements of agricultural machines and other engineering devices.

References

K. J. Bathe; E. L. Wilson, 1982. Численные методы анализа и метод конечных элементов. (Numerical Methods in Finite Element Analysis). Moscow: Stroiizdat. P. 448.

I. I. Blekhman, 2018. Вибрационная механика и вибрационная реология (теория и приложения). (Vibration Mechanics and Vibration Reology (Theory and Applications)). Moscow: Physmathlit. P. 752.

V. Glazunov, 2018. Новые механизмы в современной робототехнике. (New Mechanisms in Contemporary Robot Engineering). Moscow: Tehnosphere. P. 316.

R. Kurila; V. Ragulskienė, 1986. Двумерные вибрационные приводы. (Two – Dimensional Vibro – Transmissions). Vilnius: Mokslas. P. 137.

C. Pany, G. V. Rao. Calculation of non-linear fundamental frequency of a cantilever beam using non-linear stiffness. Journal of Sound and Vibration, 2002, 256(4), 787-790 p. DOI: 10.1006/jsvi.2001.4224.

C. Pany, G. V. Rao. Large amplitude free vibrations of a uniform spring-hinged beam. Journal of Sound and Vibration, 2004, 271, 1163-1169 p. DOI: 10.1016/S0022-460X(03)00572-8.

C. Pany. Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale University Journal of Engineering Sciences, 2023, 29(4), 370-376 p. DOI: 10.5505/pajes.2022.02489.

V. Ragulskienė, 1974. Виброударные системы. (Vibro-Shock Systems). Vilnius: Mintis. P. 320.

O. C. Zienkiewicz, 1975. Метод конечных элементов в технике. (The Finite Element Method in Engineering Science). Moscow: Mir. P. 544.

Downloads

Published

2025-12-31

Issue

Section

Articles

Most read articles by the same author(s)