INVESTIGATION OF DYNAMICS OF THE PIPE ROBOT WITH VIBRATION DRIVE BASED ON CENTRIFUGAL FORCES
DOI:
https://doi.org/10.15544/ageng.2024.56.5%20Abstract
Vibration drive based on centrifugal forces can be used as an exciter of vibrations in the structure of a pipe robot. In this paper, a pipe robot with vibration drive based on centrifugal forces is proposed and investigated. A dynamic model of the pipe robot is presented, and differential equations of motion are obtained. Model in which excitation is assumed to be of unlimited power is described and investigated as well. Typical graphical relationships for the investigated pipe robot with vibration drive based on centrifugal forces are obtained and presented. It is determined that the obtained results reproduce the main dynamic effects taking place during the motion of a pipe robot with vibration drive based on centrifugal forces.
References
I. I. Blekhman, 2018. Вибрационная механика и вибрационная реология (теория и приложения). (Vibration Mechanics and Vibration Reology (Theory and Applications)). Moscow: Physmathlit. P. 752.
N. N. Bolotnik, A. M. Nunuparov, V. G. Chashchukhin. Capsule-type vibration-driven robot with an electromagnetic actuator and an opposing spring: dynamics and control of motion. Journal of Computer and Systems Sciences International, 2016, 55(6), 986-1000 p. DOI: https://doi.org/10.1134/S106423071605004X.
V. Glazunov, 2018. Новые механизмы в современной робототехнике. (New Mechanisms in Contemporary Robot Engineering). Moscow: Tehnosphere. P. 316.
P. Kohut, K. Kurc, D. Szybicki, W. Cioch, R. Burdzik. Vision-based motion analysis and deflection measurement of a robot’s crawler unit. Journal of Vibroengineering, 2015, 17(8), 4112-4121 p.
P. Kohut, M. Giergiel, P. Cieslak, M. Ciszewski, T. Buratowski. Underwater robotic system for reservoir maintenance. Journal of Vibroengineering, 2016, 18(6), 3757-3767 p. DOI: https://doi.org/10.21595/jve.2016.17364.
V. Korendiy, O. Kachur, V. Gurey, R. Predko, R. Palash, O. Havrylchenko. Simulation and experimental investigation of kinematic characteristics of the wheeled in-pipe robot actuated by the unbalanced rotor. Vibroengineering Procedia, 2022, 45, 8-14 p. DOI: https://doi.org/10.21595/vp.2022.22971.
V. Korendiy, O. Kachur, V. Gursky, O. Kotsiumbas, P. Dmyterko, S. Nikipchuk, Y. Danylo. Motion simulation and impact gap verification of a wheeled vibration-driven robot for pipelines inspection. Vibroengineering Procedia, 2022, 41, 1-6 p. DOI: https://doi.org/10.21595/vp.2022.22521.
V. Korendiy, O. Kotsiumbas, V. Borovets, V. Gurey, R. Predko. Mathematical modeling and computer simulation of the wheeled vibration-driven in-pipe robot motion. Vibroengineering Procedia, 2022, 44, 1-7 p. DOI: https://doi.org/10.21595/vp.2022.22832.
V. Korendiy, O. Kachur, V. Gurey, I. Kuzio, T. Hurey, O. Havrylchenko. Dynamics of a wheeled robot driven by an unbalanced rotor and equipped with the overrunning clutches. Vibroengineering Procedia, 2023, 48, 1-7 p. DOI: https://doi.org/10.21595/vp.2022.23103.
V. Korendiy, O. Kachur, R. Predko, O. Kotsiumbas, V. Brytkovskyi, M. Ostashuk. Development and investigation of the vibration-driven in-pipe robot. Vibroengineering Procedia, 2023, 50, 1-7 p. DOI: https://doi.org/10.21595/vp.2023.23513.
R. Kurila; V. Ragulskienė, 1986. Двумерные вибрационные приводы. (Two – Dimensional Vibro – Transmissions). Vilnius: Mokslas. P. 137.
V. Ragulskienė, 1974. Виброударные системы. (Vibro-Shock Systems). Vilnius: Mintis. P. 320.
S. Spedicato, G. Notarstefano. An optimal control approach to the design of periodic orbits for mechanical systems with impacts. Nonlinear Analysis: Hybrid Systems, 2017, 23, 111-121 p. DOI: https://doi.org/10.1016/j.nahs.2016.08.009.
A. S. Sumbatov; Ye. K. Yunin, 2013. Избранные задачи механики систем с сухим трением. (Selected Problems of Mechanics of Systems with Dry Friction). Moscow: Physmathlit. P. 200.
S. Toyama, M. Hoshina. Development of spherical ultrasonic motor for pipe inspection robot. Journal of Vibroengineering, 2011, 13(4), 799-802 p.