RESULTS OF INVESTIGATION OF IMPROVED CALCULATION OF VISCOUS FRICTION IN THE MODEL OF A PIPE ROBOT

Authors

  • Academician, Prof. Dr. Kazimieras Ragulskis Kaunas University of Technology
  • Prof. Dr. Bronislovas Spruogis Vilnius Gediminas Technical University
  • Dr. Arvydas Pauliukas Vytautas Magnus University
  • Dr. Petras Paškevičius Company “Vaivora”
  • Prof. Dr. Anatolii Karpach National Transport University
  • M.Sc Arvydas Matuliauskas Vilnius Gediminas Technical University
  • M.Sc Vygantas Mištinas Vilnius Gediminas Technical University
  • Dr. Liutauras Ragulskis Vytautas Magnus University

Keywords:

viscous friction, pipe robot, vibrational transportation, dynamic processes

Abstract

This is the full article based on a conference paper. Pipe robots are used in agricultural engineering for transportation of materials. Also, they are used for cleaning the internal surfaces of the pipes. In the process of numerical investigation of dynamics of a pipe robot, a specific model for viscous friction is used. This influences the results of numerical calculations of dynamics of a pipe robot. A numerical procedure for more precise calculation of viscous friction is proposed in the paper. Results of investigations for two values of time steps are obtained and presented: without the proposed procedure and with it. Advantages of the improved calculation of viscous friction are indicated

References

K. Ragulskis, B. Spruogis, M. Bogdevičius, A. Pauliukas, A. Matuliauskas, V. Mištinas, L. Ragulskis. Investigation of dynamics of a pipe robot with vibrational drive and unsymmetric with respect to the direction of velocity of motion dissipative forces. Agricultural Engineering, 2020, 52, 1-6 p. DOI: https://doi.org/10.15544/ageng.2020.52.1.

V. Glazunov, 2018. Новые механизмы в современной робототехнике. (New Mechanisms in Contemporary Robot Engineering). Moscow: Tehnosphere. P. 316.

I. I. Blekhman, 2018. Вибрационная механика и вибрационная реология (теория и приложения). (Vibration Mechanics and Vibration Reology (Theory and Applications)). Moscow: Physmathlit. P. 752.

N. N. Bolotnik, A. M. Nunuparov, V. G. Chashchukhin. Capsule-type vibration-driven robot with an electromagnetic actuator and an opposing spring: dynamics and control of motion. Journal of Computer and Systems Sciences International, 2016, 55(6), 986-1000 p. DOI: https://doi.org/10.1134/S106423071605004X.

R. Bansevičius; A. Ivanov; N. Kamyshnyj; A. Kostin; L. Lobikov; V. Michieiev; T. Nikolskaja; K. Ragulskis; V. Shangin, 1985. Промышленные роботы для миниатюрных изделий. (Industrial Robots for Miniature Products). Moscow: Mashinostroyenye. P. 264.

E. Kibirkštis, D. Pauliukaitis, V. Miliūnas, K. Ragulskis. Synchronization of pneumatic vibroexciters operating on air cushion with feeding pulsatile pressure under autovibration regime. Journal of Mechanical Science and Technology, 2018, 32(1), 81-89 p. DOI: https://doi.org/10.1007/s12206-017-1209-7.

K. Ragulskis; J. Vitkus; V. Ragulskienė, 1965. Самосинхронизация механических систем (1. Самосинхронные и виброударные системы). (Self-Synchronization of the Mechanical Systems (1. Self-Synchronizations and Vibro-Shock Systems)). Vilnius: Mintis. P. 186.

K. Ragulskis, B. Spruogis, P. Paškevičius, A. Matuliauskas, V. Mištinas, A. Pauliukas, L. Ragulskis. Investigation of dynamics of a pipe robot experiencing impact interactions. Advances in Robotics & Automation Technology, 2021, 1(2), 1-8 p. DOI: 10.39127/2021/ARAT:1000103.

B. Spruogis, K. Ragulskis, M. Bogdevičius, M. Ragulskis, A. Matuliauskas, V. Mištinas. Robot Performing Stepping Motion inside the Pipe. Patent LT 4968 B, 2002.

S. Spedicato, G. Notarstefano. An optimal control approach to the design of periodic orbits for mechanical systems with impacts. Nonlinear Analysis: Hybrid Systems, 2017, 23, 111-121 p. DOI: https://doi.org/10.1016/j.nahs.2016.08.009.

A. S. Sumbatov; Ye. K. Yunin, 2013. Избранные задачи механики систем с сухим трением. (Selected Problems of Mechanics of Systems with Dry Friction). Moscow: Physmathlit. P. 200.

V. Ragulskienė, 1974. Виброударные системы. (Vibro-Shock Systems). Vilnius: Mintis. P. 320.

R. Kurila; V. Ragulskienė, 1986. Двумерные вибрационные приводы. (Two – Dimensional Vibro – Transmissions). Vilnius: Mokslas. P. 137.

K. Ragulskis; R. Bansevičius; R. Barauskas; G. Kulvietis, 1987. Vibromotors for Precision Microrobots. New York: Hemisphere. P. 326.

K. Ragulskis, B. Spruogis, A. Pauliukas, P. Paškevičius, A. Korpach, A. Matuliauskas, V. Mištinas, L. Ragulskis. Improved calculation of viscous friction in the model of a pipe robot. Proceedings of the 11th International Conference BALTTRIB’2022, 2023, 11, 34-38 p. DOI: 10.15544/balttrib.2022.8.

Downloads

Published

2023-12-18

Issue

Section

Articles