MODELING OF AIRFLOW DISTRIBUTION IN A STATIONARY POROUS BULK

Authors

  • Dovydas Arlauskas Student
  • Egidijus Zvicevičius
  • Karolis Paskačimas

DOI:

https://doi.org/10.15544/ageng.2025.57.1

Keywords:

Grain, Ventilation, Airflow, CFD modeling, SolidWorks

Abstract

 This paper investigates the airflow distribution in a stationary porous grain bulk. The aim of the study was to develop a mathematical model for a ventilated stationary porous layer, analyze airflow dispersion, and compare the results of CFD (Computational Fluid Dynamics) simulations with experimental data. The modeling was performed using SolidWorks software, while experimental measurements were conducted in a specially designed test stand. To assess the accuracy of the developed model, a statistical analysis was carried out using an independent two-sample t-test and Fisher's criterion. The experimental and simulation results showed strong agreement, with no statistically significant difference detected between their variances (p < 0.05). The findings confirm that the developed mathematical model accurately represents airflow behavior in the stationary porous grain bulk. The simulation results allow for a more detailed visualization of airflow distribution, identifying zones of excessive flow and stagnation. These insights contribute to optimizing ventilation system efficiency, reducing energy consumption, and improving grain storage conditions.

References

Dan Agro centras. Kaip džiovinti grūdus aruodiniuose sandėliuose (How to Dry Grain in Storage Warehouses). Vilnius: Sapnų sala, 1999. 62 p.

Eichelheimer, P. Fluid flow in porous media: A combined numerical and experimental approach. Bayreuth University Repository, 2020.

Horabik J., Wiacek J., Parafiniuk P., Banda M. Calibration of discrete-element-method model parameters of bulk wheat for storage. Biosystems Engineering, 2020, 200(6), 298-314.

Kantzas, A., et al. Fluid flow in porous media: Experimental and numerical approaches. Journal of Agricultural Engineering, 2015, 58(2), 123–136.

Khatchatourian, O. A., Toniazzo, N. A., Gortshoy, Y. F. Simulation of airflow in grain bulks under anisotropic conditions. Biosystems Engineering, 2009, 104, 205–215.

Liang, X., et al. Fundamentals of Fluid Flow in Porous Media. 2020. 408 p.

Mateen, M., Khan, Z. A., Minli, Y., Wenqiu, M., Tola, A. A. Enhancing wheat storage efficiency: A microcontroller-based environment control system for silo. Smart Agricultural Technology, 2025, 11, 100865. ISSN 2772-3755.

Novošinskas, H., Raila, A., Steponaitis, V. Augalininkystės produktų laikymo technologijos, sandėliai ir įrenginiai (Storage Technologies, Warehouses, and Equipment for Crop Products). Kaunas: Lietuvos žemės ūkio universitetas, 1999. 59 p.

Petruševičius, V., Raila, A. Augalininkystės produktų džiovinimas storame nejudančiame sluoksnyje (Drying of Crop Products in a Thick Static Layer). Akademija: Lietuvos žemės ūkio universitetas, 2002. 262 p.

Raila, A., Zvicevičius, E., Čipienė, A. Grūdų sandėlių ventiliacija ir laikymo sąlygų stebėjimas. Mano ūkis, 2019.

Xiaoliang, W., Ying, Z., Wang, Y., Yanbo, H., Haiyang, D. Permeability prediction of bulk wheat for storage using micro-computed tomography and lattice Boltzmann method. Biosystems Engineering, 2025, 253, 104124. ISSN 1537-5110.

Xiaoliang, X., et al. (2025). Advances in grain storage modeling: A comprehensive review. Journal of Cereal Science, 100, 103274

Downloads

Published

2025-04-15

Issue

Section

Articles