The LAND COVER MAPPING OF TROPICAL FOREST AREAS USING SPOT IMAGE IN CENTRAL BORNEO

LAND COVER MAPPING OF TROPICAL FOREST AREAS

Authors

  • Indarto Indarto University of Jember
  • Prof. Achmad University Jember
  • Mr. Mahrus University of Jember

DOI:

https://doi.org/10.15544/ageng.2024.56.1

Keywords:

SPOT, Land Cover, Classification, Forested area, Central Borneo

Abstract

Land cover is fundamental information that could be applied to understand the interaction between human activities and nature. This information could be derived from remotely sensed images. This study analyzes and compares tropical forested areas’ land cover (LC) classification results. In this study, we use a SPOT image as the primary input. The study was conducted in Central Borneo and covered 162.60 km2. The image was processed using three algorithms, including NN-MLP, MLC, and ECHO Classifier, with three treatments (2×2, 4×4, and 6×6) sized block of pixels. The classification produces nine (9) land cover classes, i.e., Sparse vegetation area, Dense Vegetation area, Shrubland, Open Water Body, Open Land, Grassland, Mining Area, Pavement Area, and Palm Oil Area. The three algorithms can produce land cover maps with kappa and an overall accuracy value of more than 85%. However, NN-MLP has better accuracy than other algorithms (MLC and ECHO), with a kappa value of 90.72% and an overall accuracy of 93.88%.

Author Biographies

Prof. Achmad, University Jember

THP

Mr. Mahrus, University of Jember

TEP

References

M. Li, S. Zang, B. Zhang, S. Li, and C. Wu, “A review of remote sensing image classification techniques: The role of Spatio-contextual information,” Eur. J. Remote Sens., 2014, doi: 10.5721/EuJRS20144723.

Y. Tu et al., “Improved Mapping Results of 10 m Resolution Land Cover Classification in Guangdong, China Using Multisource Remote Sensing Data With Google Earth Engine,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 5384–5397, 2020, doi: 10.1109/JSTARS.2020.3022210.

I. L. Sari and S. Fildes, “Land cover classification using Object-Based Image Analysis of SPOT-6 imagery for land cover and forest monitoring in Nagan Raya, Aceh - Indonesia,” Int. J. Adv. Sci. Eng. Inf. Technol., 2017, doi: 10.18517/ijaseit.7.6.3426.

J. R. Jensen, “Introductory Digital Image Processing (3rd edition). Prentice Hall.,” Int. J. Remote Sens., 2005.

M. H. Al-Jiboori, M. J. Abu-Alshaeer, and M. M. Ahmed, “Impact of land surface changes on air temperatures in Baghdad,” Oct. 2020. [Online]. Available: http://earthexplorer.usgs.gov/

A. K. Basukala, C. Oldenburg, J. Schellberg, M. Sultanov, and O. Dubovyk, “Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches,” Eur. J. Remote Sens., vol. 50, no. 1, pp. 187–201, Jan. 2017, doi: 10.1080/22797254.2017.1308235.

J. Hogland, N. Billor, and N. Anderson, “Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing,” Eur. J. Remote Sens., 2013, doi: 10.5721/EuJRS20134637.

R. L. Kettig and D. A. Landgrebe, “Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects,” IEEE Trans. Geosci. Electron., 1976, doi: 10.1109/TGE.1976.294460.

D. Lu et al., “Land use/cover classification in the brazilian amazon using satellite images,” Pesqui. Agropecu. Bras., vol. 47, no. 9, pp. 1185–1208, 2012, doi: 10.1590/S0100-204X2012000900004.

C. A. Berlanga-Robles and A. Ruiz-Luna, “Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques,” J. Coast. Res., 2002.

A. Crabbe, T. Cahy, B. Somers, L. P. Verbeke, and F. Van Coillie, “Neural Network MLP Classifier,” 2020.

N. Kushwaha, N. K. Mendola, S. Ghosh, A. D. Kachhvah, and S. Jalan, “Machine Learning Assisted Chimera and Solitary States in Networks,” Front. Phys., 2021, doi: 10.3389/fphy.2021.513969.

Astrium, SPOT 6 & SPOT 7 Imagery User Guide. 2013.

L. Černá and M. Chytrý, “Supervised classification of plant communities with artificial neural networks,” J. Veg. Sci., vol. 16, no. 4, pp. 407–414, Aug. 2005, doi: https://doi.org/10.1111/j.1654-1103.2005.tb02380.x.

A. K. Skidmore, “Unsupervised training area selection in forests using a nonparametric distance measure and spatial information,” Int. J. Remote Sens., vol. 10, no. 1, pp. 133–146, Jan. 1989, doi: 10.1080/01431168908903852.

J. Al-doski, S. B. Mansor, and H. Z. M. Shafri, “Image Classification in Remote Sensing,” J. Environ. Earth Sci., vol. 3, no. 10, pp. 141–147, 2013.

BSN, “Standar Nasional Indonesia (SNI) 7645:2014 tentang Klasifikasi Penutup Lahan,” p. 28, 2014.

N. Hoepffner and G. Zibordi, “Optical remote sensing of coastal waters,” in Encyclopedia of Ocean Sciences, 2019. doi: 10.1016/B978-0-12-409548-9.10812-7.

M. S. Rini, “Kajian kemampuan metode neural network untuk klasifikasi penutup lahan dengan menggunakan Citra Landsat-8 OLI (kasus di Kota Yogyakarta dan sekitarnya),” Geomedia Maj. Ilm. dan Inf. Kegeografian, vol. 16, no. 1, Aug. 2018, doi: 10.21831/gm.v16i1.20974.

S. S. Rwanga and J. M. Ndambuki, “Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS,” Int. J. Geosci., 2017, doi: 10.4236/ijg.2017.84033.

R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” Remote Sens. Environ., vol. 37, no. 1, pp. 35–46, 1991, doi: 10.1016/0034-4257(91)90048-B.

J. B. Campbell, Introduction to Remote Sensing, 4th ed. New York: The Guilford Press, 2008.

Downloads

Published

2024-12-06

Issue

Section

Articles