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Alkaline soil additives used in this study, as cement kiln dust and lime mud, resulted in significant rise of the pH in contaminated soil 
and sludge mixtures, while buffering capacity of the sludge appeared to be much stronger than that of the soil. Total concentrations of 
the investigated trace elements in the tested samples in most cases were above limit values given in Lithuanian environmental normative 
documents HN 60:2015 and LAND 20:2005; Cd, Zn and Pb concentrations exceeding MPCs by 2-10 times. Nickel, cadmium and 
copper in the sludge appeared to be the most mobile elements, their EDTA-extractable fraction reaching 30-50% from the total. The 
tested industrial by-products in most cases significantly reduced trace element mobility. Immobilizing effect in the contaminated soil 
was from low to moderate, while impact on the reduction of Cd, Pb, Zn, Cr, Ni, As, Se, Hg mobility in the sludge was much stronger. 
Alkaline treatment was not so effective to reduce mobility of Cu and As in the soil, but immobilising effect of lime mud on these 

elements in the sludge was significant. A multivariate data analysis model with two principle components explained 94% of the data 
variation. The most distinctive factor, separating samples, was the origin of the two tested metal-rich substrates: contaminated soil and 
sewage sludge. Contaminated soil could be distinguished by high concentrations of As, Tl, Hg and Pb. Both alkaline treatments on 
sewage sludge were more effective, thus scores are further from the origin, although, difference between kiln dust and lime mud 
immobilising effectiveness was not so significant. Application of alkaline amendments: cement kiln dust and lime mud, proved to have 
strong immobilizing effect on the most of the investigated trace elements, and usage of local by-products for contaminated soil (sludge) 
remediation purposes could be seen as an environmentally friendly, cost-effective and safe disposal alternative. 
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INTRODUCTION  
 

Trace elements (TE) are chemical elements with a very low concentration (a trace amount) in Earth’s crust. In 

biochemistry, a trace element is a dietary element that is needed in very minute quantities for the proper growth, development, 

and physiology of the organism. In geochemistry, a trace element is one with a concentration less than 1 000 ppm or 0.1% 

of a rock's composition. Naturally trace elements are found in Earth’s crust and due to weathering, they are dispersed in the 

environment. All soils contain a full range of TE, but their concentrations usually are very low. Although, TE concentrations 

differ from soil to soil, toxicity level is seldom reached, because geochemical cycles are very slow. Due to intense 

anthropogenic activities, these cycles were altered and now soils tend to accumulate TE in concentrations that exceed 

background values and pose risk to living organisms (Alloway, 2013). Some TE (i. e., micronutrients such as zinc (Zn) or 

copper (Cu)) are required to living organisms in small concentrations, but higher doses can be poisonous. Non-essential ones 
(e.g., arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb)) become toxic even sooner. Trace elements interact with 

biomolecules, disrupt essential biological functions and cause toxic effects. Moreover, they have an ability to be transferred 

from terrestrial ecosystems to the food chain (Kabata-Pendias, 2011; Gall, et al., 2015). There are two basic terms describing 

how toxic elements move through trophic chain: bioaccumulation and biomagnification. The first one refers to a process 

when contaminant builds up in tissues if it is adsorbed faster than is removed, and the second one is a process when 

concentration of a contaminant increases while moving upwards in the food chain (Alexander and Fairbridge, 1999). Plants 

are a first-hand bond between soil chemical composition and food chain. In general, plants readily uptake TE compounds 

that are dissolved in the soil solutions in either ionic, chelated or complexed forms. The mobile fraction of many TE behaves 

like bivalent cations in soil phases and is controlled by dynamic equilibria between solid and liquid phases (Rajakaruna and 

Boyd, 2008). There are several processes that can influence TE conversion from insoluble to soluble fractions and vice 

versus: dissolution, sorption, complexation, migration, precipitation, occlusion, diffusion (into minerals), binding by organic 

substances, absorption and sorption by microbiota (Kabata-Pendias, 2011; Zaidi et al., 2012; Alloway, 2013). Toxic effects 
in plants induced by TE are related to an element type, speciation, exposure time and concentration. Metal speciation mostly 

depends on valence degree, particle size and solubility (Tchounwou et al., 2012). 
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Scientific literature usually describes toxic effects of the main 8-10 metals and metalloids, including aforementioned 

Cu, Zn, Cd, Pb, Hg, As, also chromium (Cr), nickel (Ni), cobalt (Co) or manganese (Mn). Arsenic, for example, was widely 

used in pesticides, dyes and preservatives in the past. Most of the products containing As compounds now are banned or 

highly restricted. However, historical soil and water pollution with arsenic persists (Kumpiene et al., 2006). Other trace 

elements, like platinum-group metals, rare earth metals (or lanthanoids), also such as e.g. tungsten (W), selenium (Se), 

thallium (Tl), are less investigated, but there is no doubt about their toxicity and danger to the environment. Agency for 

Toxic Substances and Disease Registry (ATSDR) lists over 25 TE as potentially hazardous to human health and environment. 

These elements exhibit low total concentration in Earth’s crust. Thus, it is difficult to detect them in contaminated media 

using conventional instrumentation. Sometimes less abundant TE become “emerging contaminants” or “contaminants with 
emerging concern”, meaning that such elements were known to exist, but for which the environmental contamination issues 

were not fully realized or apprehended (Campbell, 2006; Sauve and Desrosiers, 2014).  

Total TE concentrations in the soil are less important when predicting TE availability to plants as well as other 

living organisms. Trace element mobility in the soil as well as bioavailability are influenced by several factors, such as 

redox potential, moisture content, OM content, temperature, granulometric composition, and most important – soil pH 

(Alloway, 2013). Unlike many organic pollutants, TE do not undergo biochemical degradation, are very persistent in the 

environment, and since anthropogenic emissions are higher than the natural ones, TE mobility and bioavailability are 

altered as well. So, when technogenic input is prevailing, basically all terrestrial components, including soil, 

surface/ground water, and finally biota are contaminated (Fu and Wang, 2011; Koptsik, 2014; Akcil et al., 2015). 

Seeking to reduce TE mobility and bioavailability in-situ chemical stabilisation can be applied. The goal of immobilization 

is conversion of mobile toxic metal compounds, into more stable and less soluble as well as less toxic metal bearing phases. If 

TE are incorporated into more stable and less soluble compounds, such as sulphides, phosphates, hydroxides, their mobility and 
bioavailability will be reduced, and the potential hazards of toxic metals will be lower (Hartley et al., 2004; Yang & Zhang, 2017). 

There was always a demand for search of alternative soil remediation methods which are regarded as less intrusive and more cost-

effective (Hartley & Leep, 2008). Immobilization treatment could be one of such cost-effective solutions, which is easy to apply, 

which does not require specific equipment, and no soil ex-situ operation (excavation, transportation, treatment) is needed. 

Immobilisation can be based on the sorption of contaminants, complex formation or precipitation. Many immobilization 

techniques have been developed in the past several decades, while soil additives used for immobilisation of TE can be very 

different, including such as aluminium (Al) and Mn oxides, zero-valent iron and iron compounds, fly ash, cement dust, other 

alkaline and organic waste materials, geopolymers, biochar, etc  (Bertocchi et al., 2005; Seidel et al., 2005; Dobran & Zagury, 

2006; Kumpiene et al., 2006, 2007, 2008; Jeong et al., 2007; Moon et al., 2007; Ruiping et al., 2009; Houben et al., 2013; Bolan 

et al., 2014; Chen et al., 2016;  Tan et al., 2016; Guo et al., 2017; Vu and Gowripalan, 2018). 

Aim of this study was to evaluate mobility changes of the selected trace elements (including cadmium, mercury, 
arsenic, thallium, selenium) in the contaminated soil and sewage sludge after chemical stabilisation using local alkaline 

industrial by-products.  

 

RESEARCH METHODS  
 

Contaminated soil (Soil) and sewage sludge (SS) samples were mixed with 20% of an immobilising additive 

(calculated on dry weight (DW) basis): cement kiln dust (CKD) or lime mud (LM) according to the scheme provided in 

Fig. 1. Ultra-pure water was added to all the mixtures to form thick suspension. Mixtures were thoroughly homogenised 

and left stand still for 2 weeks before elemental analysis. Sludge was sampled at Kaunas wastewater treatment plant after 

the dewatering stage, composite Soil sample was taken from a brownfield in Kaunas city industrial area, and alkaline 
waste products CKD and LM originated from local cement and sugar industries, respectively.  

 

 
Figure 1. Mixture preparation scheme where trace element mobility in contaminated soil and sewage sludge was attempted to be 

reduced using CKD and LM 
 

Mixtures were dried at 40°C, and milled/ground to make it pass through a 2.0 mm sieve. Total TE concentration 

in the solids was determined by flame or graphite furnace AAS (Perkin-Elmer 3030) after the digestion with aqua regia, 

while mobile TE fraction – after extraction with 0.05 molar solution of a strong metal chelating agent diammonium salt 
of ethylenediaminetetraacetic acid (EDTA). Other mixture properties, as pH, organic matter (OM), moisture and plant 

nutrient content, were also tested.  

All determinations were carried out in triplicates, and results calculated as mean values expressed in mg/kg on dry 

matter (DM) basis. Reagent blanks were used for quality assurance. Significance level was calculated using t-test (two 

sample analysis assuming unequal variances) when p < 0.05. Relative standard deviations for triplicates in all cases were 

80%  

Soil – Contaminated Soil 

SS – Sewage Sludge 

 

20% 

LM – Lime Mud  

CKD – Cement Kiln Dust 
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below 10%.  Principle component (PC) analysis was used to identify groups of observations within the data set that 

indicated distinctive differences between analysed sample groups. Multivariate analysis was performed to analyse 

relationships between measured parameters and different treatments. 

 

RESEARCH RESULTS  
 

Characterisation of immobilising agents. The goal of chemical stabilization is to convert mobile TE fraction into 

insoluble and hardly bioavailable chemical species. It was expected that due to alkaline properties, CKD and LM can 

perform as TE mobility decreasing agents, converting them into insoluble and less toxic hydroxides, carbonates or oxides. 

Previous research has shown that alkaline waste materials are potentially effective metal immobilisers (Khalid et al., 

2017). During the laboratory tests of this study the effectiveness of cement kiln dust and lime mud was judged on the 

changes of ratio of mobile/immobile fractions in the mixtures that occurred as a result of adding CKD or LM to each 

tested soil/sludge samples. Both of the selected stabilisers are by-products originating from local industry. CKD is a by-

product collected from kiln exhaust gases during the manufacture of Portland cement while changing the raw mix to a 
cement clinker at temperatures of 1400–1650°C. Typically, CKD has approximately one-third of the amount of cement 

oxides (CaO, Al2O3, SiO2, Fe2O3) present in Portland cement (Miller & Azad, 2000). While, there is an abundance of 

scientific papers on metal immobilization using the final product – Portland cement, the immobilization effect of the 

discarded CKD is less explored and could contribute to utilisation of this type of waste material. Sugar lime mud is 

produced after sugar juice is clarified, and is the main solid waste in sugar industry. Its safe disposal always has been the 

hot topic, as random stacking occupies land and pollutes the air and the underground water (Li et al., 2014). LM is rich 

in inorganic and organic nutrients, but finds limited use in agriculture as fertilizer or soil conditioner, and the main reason 

is the insoluble and imbalanced nature of plant nutrients (Elsayed et al., 2008). Lime mud is also rich in calcium 

compounds and has highly alkaline pH. Scientific literature on LM utilisation as metal pollution stabiliser is scarce. 

Furthermore, most of the studies deal with LM from pulp and paper mills and red mud. Therefore, study involving LM 

produced locally could enhance its utilization and offer a TE immobilisation effect.  
The available literature indicates that given the proper conditions alkaline waste can be an effective metal 

immobiliser (Miller & Azad, 2000; Kumpiene et al., 2008; Khalid et al., 2017). Results of this study showed that mixing 

resulted in significant rise of the pH from neutral or slightly acidic up to 10-11 in the sludge mixtures, and up to 11.5-

12.5 in the Soil mixtures. Organic matter content was from 4-5% in the Soil mixtures and as high as 51% in the sludge 

mixtures. Such data indicates on higher buffering capacity of the sludge when compared with the Soil. All mixtures can 

be characterised as rich in calcium/magnesium oxides (10-15%), while amount of potassium oxide in all mixtures with 

kiln dust was 2.2-2.3%. Mean concentrations of other plant nutrients, as nitrogen and phosphorus (expressed as pentoxide) 

in the sludge mixtures were 3.6 and 2.7% respectively.  

TE total concentrations. Trace element concentration values, in the tested stabilised mixtures as well as their 

components, which are determining the level of contamination varied from low to moderate. The range of total 

concentrations of the selected TE is presented in Table 1.  
 

Table 1. Total TE concentration in the tested samples and maximum permissible TE concentrations in soils according to WHO, FAO 
and Lithuanian environmental normative documents 

Elemen
t 

Concentration, mg/kg 

WHO, 
FAO 

HN 

60:201
5 

LAND 20:2005 
Environmental protection rules for territory contaminated 

with chemical compounds management 
In the tested 

Soil, SS, CKD 
and LM samples All 

soils 
All soils 

Sand, 

sandy loam 

Clay, clay 

loam 

Very sensitive 

soil 
Sensitive soil 

Moderately 

sensitive soil 

Low 

sensitivity soil 

Ag -* 2 - - 0.25 0.5 0.75 2 - 

As 20 20 - - 10 20 30 80 0.6-28 

B - 50 - - - - - - - 

Ba - 700 - - 500 700 1000 1 500 - 

Be - 10 - - - - - - - 

Cd 3 1.5 1 1.5 0.75 1.5 2.5 3 0.75-14 

Cr 100 80 50 80 50 80 300 600 13-136 

Co 50 40 - - 20 40 60 120 - 

Cu 100 75 50 80 - - - - 13-167 

Fe 50000 NG - - - - - - - 

Hg - 0.5 0.6 1 0.25 0.5 0.75 1 0.2-1.2 

Mn 2 000 1 500 - - 1 000 1 500 2 000 10 000 - 

Mo - 5 - - 2.5 5 7.5 15 - 

Ni 50 75 50 60 50 75 150 300 16-67 

Pb 100 80 50 80 50 80 150 500 24-169 

Sb - 10 - - 5 10 15 30 - 

Se 10 1.5 - - 0.75 1.5 2.5 4.5 0.7-2.1 

Sn - 20 - - 10 20 30 40 - 

U - 20 - - 10 20 30 40 - 

V - 150 - - 80 150 300 450 - 

Tl - - - - - - - - 4-17 

Zn 300 300 160 260 75 300 600 1 200 60-1655 

* Not given or tested 
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TE total concentrations were compared with the limit values, given in different Lithuanian, EU and International 

environmental legislative documents. World Health Organization (WHO) as well as Food and Agricultural Organization 

(FAO) established maximum permissible concentrations (MPC) for elements in the soil, and many countries have local 

MPC values based on WHO and FAO guidelines in their national law, which are at the same time in line with European 

Union (EU) legislation. There are three main documents regarding TE concentrations in soils in Lithuania.  

 Lithuanian Hygiene Standard setting MPC for hazardous chemical compounds in the soil (HN 60:2015). Values 

(Table 1) are applicable to residential and recreational areas as well as agricultural land. The document aims to 

implement such MPC of hazardous chemical compounds in the soil, which would not influence human health and 

health of future generations, neither directly nor indirectly, through water, air or plants (Ministry of the Environment, 
2004).  

 Lithuanian Environmental Regulatory (Normative) Document setting rules for sewage sludge uses for agricultural 

and land reclamation purposes (LAND 20-2005). It is applicable to the sludges from domestic/municipal and 

industrial effluent treatment process. The document aims to regulate SS use for agricultural purpose, for energy plant 

cultivation and for land reclamation in such a manner that no harm would be done to the soil, biota, animals and 

humans. Permissible concentrations of toxic elements in the soil (Table 1) are given in relation to SS use on 

agricultural land as fertilizer. If metal concentration in SS exceeds 70% of MPC for a given element in the soil, then 

application of 2nd category sewage sludge is prohibited (Ministry of the Environment, 2001). 

 Environmental protection rules for territory contaminated with chemical compounds management. Maximum permissible 

concentrations (Table 1) are given in respect to sensitivity of the territory (Ministry of the Environment, 2008). 

One can observe from Table  that permissible concentration for some elements differs between different documents 
and sometimes it is tricky to know which document to follow. It is often a case when a territory manager decides upon 

lower target values. It was found, that total concentrations of the investigated elements in the tested samples in most cases 

were above MPC values given both in HN 60:2015 and LAND 20:2005; cadmium, zinc and lead being responsible for 

the highest level of contamination. Total thallium concentration in the Soil mixtures was the highest (17 mg/kg), but it is 

not possible to conclude about environmental risk, as no thallium MPC is given in the above discussed normative 

documents. 

TE mobility. Changes of TE mobility in the stabilised Soil and SS mixtures are presented in Fig. 2. The degree of 

element immobilization was evaluated by analysing the EDTA-leachable fraction in the treated mixtures and comparing 

with untreated solids. Results of immobilising experiment showed that Soil and SS mixing with alkaline industrial by-

products in most cases significantly reduced TE mobility. Immobilizing effect on trace elements in the Soil was moderate, 

while CKD and LM impact on the reduction of Cd, Pb, Zn, Cr, Ni, As, Se, Hg mobility in the sludge was much stronger. 

No significant stabilising effect was observed in the case of thallium. Moreover, in several tested Soil samples even an 
increased mobility after the alkaline treatment was detected for Cu and As. 

 

 
Figure 2. Changes of TE mobility in the stabilised Soil (left) and sewage sludge (right) mixtures 

 

In general, alkaline treatment was able to produce more stable compounds of the majority of the investigated TE 

in the tested samples and reduce their potential negative impact on the environment and living organisms. The best 

stabilising results were obtained in the SS mixture with lime mud, where mobility of all the investigated TE was 

significantly reduced. Important to mention, that lower TE mobility in the growing substrate, as a rule means lower metal 

bioavailability and finally slower bioaccumulation in plants grown on it (Zeng et al., 2011). Ni, Cd and Cu in the sludge 
distinguished as the most mobile elements from the tested ones – mobile fraction reaching 30-50% of the total 

concentration. High mobility of the elements in the tested samples might be predetermined by the anthropogenic origin 

of these contaminants both in the investigated contaminated soil as well as municipal wastewater sludge samples. Alkaline 

treatment was not so effective to reduce mobility of Cu and As in the soil, but immobilising effect of lime mud on these 

elements in the sludge was significant.  

Principle component analysis. Most of the results in the multivariate data analysis model are described by two 

principle components: PC1 and PC2, and together they explain 94% of the data variation (Fig. 3). The score scatter plot 

(Fig. 3a) shows how observations from the Soil, SS and their mixtures with LM and CKD are located in the score space 

with respect to each other. The loading scatter plot (Fig. 3b) is used to explain which variables cause the grouping because 
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the averages for each variable were loaded at the same position and correlate with their scores. The most distinctive factor 

separating samples was the origin of the two main samples: Soil (contaminated soil) or SS. Contaminated soil could be 

distinguished by high concentrations of As, Tl, Hg and Pb. While SS contained more of Cu, Zn, Cr, and Cd. As it was 

clear from Fig. 2, alkaline treatment on Soil was not as effective as on SS. This coincides with PCA, because in score 

scattering plot Soil+LM and Soil+CKD treatments are not far away from its origin – Soil sample. 

 

 
Figure 3. Principle component analysis of TE content in the Soil, sewage sludge and their mixtures with lime mud and cement kiln 

dust: a) score scatter plot; b) load scatter plot. PC1 and PC2 – principal components 1 and 2, respectively; TOT – total 
concentrations, MOB – mobile concentrations 

 

Both alkaline treatments on SS were more effective, thus scores are further from the origin (SS), although, difference 

between CKD and LM immobilising effectiveness was not so significant. 

 

CONCLUSIONS 

 

 The investigated alkaline additives, as cement kiln dust and lime mud, resulted in significant rise of the pH of soil and 

sludge mixtures, while buffering capacity of the sludge appeared to be much stronger than that of the contaminated 

soil.  It was found, that total concentrations of the investigated TE in the tested samples in most cases were above limit 

values given in LT environmental normative documents (HN 60:2015, LAND 20:2005); Cd, Zn and Pb concentrations 
exceeding MPCs by 2-10 times. Total thallium concentration in the Soil mixtures was higher than that in the sludge 

mixtures, but it is not possible to conclude about environmental risk associated with TL, as no limit values for soil Tl 

levels have been listed in the studied normative documents.  

 Nickel, cadmium and copper in the sludge appeared to be the most mobile elements from the tested ones – mobile 

fraction reaching 30-50% from their total concentration. Additives of alkaline industrial by-products in most cases 

significantly reduced trace element mobility. Immobilizing effect in the Soil was from low to moderate, while CKD 

and LM impact on the reduction of Cd, Pb, Zn, Cr, Ni, As, Se, Hg mobility in the sludge was much stronger. Alkaline 

treatment was not so effective to reduce mobility of Cu and As in the soil, but immobilising effect of lime mud on 

these elements in the sludge was significant. 

 A multivariate data analysis model with two principle components explained 94% of the data variation. The most 

distinctive factor, separating samples, was the origin of the two tested metal-rich substrates: contaminated soil and 
sewage sludge. Contaminated soil could be distinguished by high concentrations of As, Tl, Hg and Pb, while sewage 

sludge contained more of Cu, Zn, Cr, and Cd. Both alkaline treatments on sludge were more effective, thus scores are 

further from the origin, although, difference between kiln dust and lime mud immobilising effectiveness was not so 

significant. 

 To conclude this study, application of alkaline amendments, cement kiln dust and lime mud, proved to have strong 

immobilizing effect on most of the investigated TE, and usage of local by-products for contaminated soil (sludge) 

remediation purposes could be seen as an environmentally friendly, cost-effective and safe disposal alternative. 
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