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Nowadays it is paramount to promote bioenergy for climate protection, energy security and creation of income/jobs. In this perspective, Anaerobic Digestion 

(AD) for biogas and digestate production seems to be a viable way to simultaneously improve waste management while producing Renewable Energy 

Sources (RES). The main objective of this work is to assess the environmental impact associated with biomethane and digestate production from an AD plant 

as Global Warming Potential, expressed in CO2 equivalents. Therefore, a LCA was carried out for the production of biomethane ready for the injection into 

the Italian distribution natural gas grid. 

A mix from different waste sources (cattle manure and slurry, pig slurry, Citrus industry by-product, chicken manure, manure from broilers, triticale silage 

and waste from vegetable cleaning) is considered for biogas and digestate production. Besides biomethane this plant will produce digestate, that is a biological 

and nutrient-rich fertiliser. Thus, the cycle of circular economy is closed, as the recovery of matter and energy is carried out from waste. 

The results clearly indicate the importance of the process steps transport of biomass to AD plant and, above all, methane upgrading (separation by membrane). 

Depending on the high amount of the substrate and long distance travelled, Citrus waste substrate transport accounts for the largest share in GHG emissions 

with 0.229 kg CO2-eq/Nm3 or 70.5 % of total transportation emission. Greenhouse gas emissions estimated for the various process stages for the Sclafani 

Bagni plant showed, that methane upgrading emits 1.95 kg CO2-eq/Nm3, while other processes totally emits 0.525 kg CO2-eq/Nm3. The LCIA results 

confirmed the negative total impact of the process with grid injection, in terms of kg of CO2 eq.: the LCA verified the carbon-negative-bio-energy concept 

of the project. Therefore, biomethane derived from biogas is an entirely renewable and readily available low carbon alternative fuel, that can be locally 

produced from organic waste and capable to replace the fossil natural gas in the near future. 
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INTRODUCTION 

 

The reduction of 20% in CO2 emissions, raising the share of European Union energy consumption produced from 

Renewable Energy Sources (RES) to 20% and a 20% improvement in the European energy efficiency are the three key goals 

of the European Commission energy policy for the year 2020. 

In order to fulfil the above objectives, the European Commission encourages the use of alternative biofuels to replace 

diesel and petrol (EU, 2009). One of these biofuels is biogas, that is a clean and renewable bioenergy deriving from organic 

waste. Biogas is a mixture which mainly consists of methane (CH4) but also carbon dioxide (CO2) and several impurities. 

Biogas can be purified to increase its methane content, thus providing a promising energy carrier, i.e. biomethane. In fact, 

biomethane is obtained from biogas by means of a purification process called upgrading (Chandra et al., 2012). The upgrading 
technologies remove CO2 and other impurities from biogas, in order to increase the concentration of biomethane up to more 

than 95%. Currently, the main upgrading technologies available, that can be differentiated according to their CO2 removal 

method, are: cryogenic or separation by membrane (considered in this study), adsorption (Pressure Swing Adsorption - PSA), 

absorption (chemical scrubbing with amine, High Pressure Water Scrubbing - HPWS). Generally, CO2 can be recovered and 

reused for other industrial applications (Comparetti et al., 2013a; Florio et al., 2019). Biomethane is a renewable energy 

similar to natural gas that can be used as a non-pollutant vehicle fuel and/or injected into the Italian distribution natural gas 

grid, similarly to fossil-based methane (Comparetti et al., 2015). 
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The pure CO2 can be used to enhance algae growth (Singh, Satendra & Singh, Priyanka 2014), while the biomethane can be 

stored in a fuelling station. From this station a natural gas lorry can be refilled, as well as a portable injection system, in order to 

store and transport the renewable gas to a point where it can be injected into the Italian distribution natural gas network. 

Nowadays it is paramount to promote bioenergy for climate protection, energy security (i.e. reduction of energy imports 

and dependencies from fossil energy carriers) and creation of income/jobs (direct, i.e. creation of income in rural areas, and 

indirect, i.e. development of an economy based on biomass/bioenergy). 

EU Commission has introduced a number of sustainable criteria to be fulfilled, established by the Renewable Energy 

Directive (RED) 2009/28/EC. 

The basic idea of the Life Cycle Assessment (LCA) methodology is the quantification of environmental impacts of a 
product system throughout its life cycle. 

The Annex V of the EU Directive RED methodology clearly defines the basic framework of the investigation: 

- system boundaries (well-to-wheel); 

- allocation of by-products, based on the Lower Heating Value (LHV) of products and by-products; 

- functional unit for the expression of the result calculated (e.g. 1 m3 of biomethane at STP - 0°C and 100 kPa); 

- Life Cycle Impact Assessment (LCIA) approach, i.e. GHG (Greenhouse Gas) emissions; 

- characterisation factors for the conversion of GHG into CO2-equivalents; 

- reference value for the comparison and interpretation of the results. 

The conventional storage of manure leads to GHG emissions and can be a significant contributor to these emissions 

from agricultural sector. Instead the use of manure for biogas production can avoid emissions. 

As far as the allocation of the digestate from biogas/biomethane production: 

- the EU RED methodology allows only one allocation approach (based on the LHV); this does not necessarily reflect the 
true value of the digestate, that is often used as fertiliser and, thus, substitutes synthetic chemical fertiliser in agricultural 

production processes; 

- separating the digestate into a dry and a liquid phase, in order to reduce its water content, can help to allocate a bigger 

part of the overall emissions to the digestate and, thus, increase the GHG-mitigation potential of the biomethane. 

The GHG-emission savings from the Anaerobic Digestion (AD) of agricultural by-products and organic residues and 

wastes (e.g. manure) and, thus, the avoidance of emissions from the conventional treatment of these materials can have a 

significant impact on the overall result of the GHG-mitigation potential for biomethane (Comparetti et al., 2013a). 

In recent years, a growing interest has arisen in the generation and use of Renewable Energy Sources (RES), to switch from 

fossil-based to more sustainable production and consumption patterns. Bioenergy from waste feedstock represents a valuable 

prospect that increasingly attracts the attention of populations and governments towards waste-based biorefinery processes. 

In this perspective, AD for biogas and digestate production seems to be a viable way to simultaneously improve waste 
management while producing RES. 

In Europe, biomass currently accounts for 2/3 of RES and will play a key role in achieving the target approved by the 

renewable energy Directive of 20% of final energy consumption based on RES by 2020 (AEBIOM, 2009). In Germany, 

biomass accounted for 8.2% ca. of the primary energy demand in 2013 (FNR, 2014). Examples of biofuels produced from 

biomass include bioethanol, biodiesel and biogas. Currently, Germany is the world leader in the deployment of biogas 

technology and plays the leading role in the European biogas market (Sorda et al., 2013). The number of biogas plants in 

Germany increased from 1050 in 2000 to 7850 in 2013. With respect to overall biogas production, Germany is followed by 

United Kingdom, France, Italy and Netherlands (Van Foreest, 2012). Biogas is used in Combined Heat and Power (CHP) 

units to produce electricity and heat. In 2013, primary production of biogas in Europe (including landfills and sewage gas) 

was estimated as 13.4 Mtoe, i.e. million tons of oil equivalents (EurObserv’ER, 2015). 

In Italy, new legislation concerning biomethane has recently been approved, by promoting its use in the transport sector 
with the aim of diversifying and decarbonising natural gas. In addition, financial incentives have also been established for 

new biogas plants that will be converted to biomethane production (Comparetti et al., 2012, 2013b; Florio et al., 2019). 

The main objective of this work is to assess the environmental impact associated with biomethane and digestate 

production and the injection of biomethane itself into the Italian distribution natural gas network from a biogas production 

plant. Therefore, a LCA was carried out for the production of biomethane ready for the injection into the natural gas grid. 

 

METHODS 

 

LCA is a methodology for the comprehensive assessment of the environmental impact associated to a product or 

process during its life cycle (from extraction of raw materials to product disposal at the end of use) and it is sometimes referred 

to as cradle-to-grave analysis. However, when the system boundaries are restricted to selected life cycle stages (e.g. from raw 

materials extraction to product manufacture, as in the investigated case study), a cradle-to-gate perspective can be applied. 
According to the ISO standards, this LCA consists of four interrelated components: (i) goal and scope definition; (ii) 

inventory analysis; (iii) impact assessment and (iv) interpretation of results for explanation of conclusions and 

recommendations. 

The goals of this study are: 
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- to measure the environmental impact of an AD plant for biomethane and digestate production; 

- to identify the environmental hotspots in the production cycle carried out in an AD plant for obtaining biomethane and 

digestate. 

The Functional Unit (F.U.) selected is 1 m3 of biomethane (at STP - 0°C and 100 kPa) produced from biogenic waste 

feedstock, after upgrading process (separation by membrane) but before injection to natural gas grid or transport: it represents 

the reference to which all the inputs and outputs of the system are adjusted. The boundary of the investigated system is defined 

from cradle to gate, being limited to the biogas production and conversion into biomethane and digestate, while neglecting 

any following use. Data for a mix from different waste sources (cattle manure and slurry, pig slurry, Citrus industry by-

product, chicken manure, manure from broilers, triticale silage and waste from vegetable cleaning) is considered for biogas 
and digestate production by means of AD and were taken from Ecoinvent database v.3.4 (Wernet et al., 2016). The Life Cycle 

Impact Assessment (LCIA) of the F.U. is carried out by using the SimaPro software, version 8.0. In particular, the impact 

assessment is performed by means of one of the most recent and up-to-date LCA methods, the CML-IA baseline V 3.00. In 

this study, according to the recommendations from the ILCD Handbook, the Global Warming (GWP100a) midpoint impact 

category is analysed. The data about the means of transport used for transferring the substrates to the biogas plant were drawn 

from a previous paper (Comparetti et al., 2014). The methodology used for LCA is defined in the ISO Standard 14040:2006 

and ISO Standard 14044:2006. Greenhouse gas emissions are expressed as GWP100 in accordance with IPCC (International 

Panel for Climate Change) guidelines and describe the contribution of emissions to the greenhouse effect over 100 years and 

thus also climate change. In the case of biofuels, “CO2 equivalents” refers to all the emissions of the GHG carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O), which are converted by using appropriate IPCC 2007 factors. 

The process has been divided into three systems: 

1. pre-treatment of the raw materials; 
2. anaerobic digestion of the raw materials; 

3. biogas upgrading. 

In order to transform Fontana Murata farm into a multifunctional agriculture one, an AD plant will be built up, together 

with the structures for the storage and treatment of raw materials and products. It will transform the following organic 

agricultural and food raw materials, available within the following distances from the plant itself, into biogas and digestate: 

- cattle manure (10 km); 

- cattle slurry (10 km); 

- pig slurry (40 km); 

- Citrus industry by-product (150 km) (Comparetti et al., 2017); 

- chicken manure (100 km); 

- manure from broilers (100 km); 
- triticale silage (3 km); 

- waste from vegetable cleaning (3 km). 

The biogas will be upgraded to biomethane, that is a renewable biofuel chemically equal to fossil methane but having 

pollutant emissions highly lower than alternative fuels. Besides biomethane this plant will produce digestate, that is a 

biological and nutrient-rich fertiliser. Thus, the cycle of circular economy is closed, as the recovery of matter and energy is 

carried out from waste. The experience basis for this study is a modern biomethane plant to be built up in Sclafani Bagni 

(Palermo)/Italy, which will be operated by Fontana Murata farm. The plant will be run with a mix of the above raw materials. 

Among the upgrading technologies, the separation by membrane was selected, because it generates the lowest impacts on all 

the investigated categories (Florio et al., 2019). 

The basic processes and system limits of the biomethane production plant in Sclafani Bagni are specified in Figure 1. 

 

RESEARCH RESULTS 

 

The main examined process steps are: transport of biomass to AD plant; digestate spreading; biogas production; methane 

upgrading. 

The GHG emissions estimated for the various process stages are shown for the Sclafani Bagni plant in Figure 2. The results 

clearly indicate the importance of the process steps transport of biomass to AD plant and, above all, methane upgrading. In 

the transport of biomass to AD plant, GHG emissions are significantly lower compared to the emissions from methane 

upgrading. In order to sustain a long-term operation of the AD plant, quantities of feedstock are stored depending on the plant 

size. In addition, the covered storage of substrates serves as a biochemical preservation (Soukup, 2008). 

From the preloading tank (only for cattle and pig slurry) or trench (for all the other substrates), the substrates enter six 

digesters, where the AD process is carried out for biogas and digestate production. 
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Figure 1. Basic processes and system limits of the biomethane production plant in Sclafani Bagni. 
 

GHG calculations for biomethane production processes usually identify the supply of process energy (both 
electricity and heat), as well as the direct methane emissions as relevant parameters. For the operation of the biogas 

digesters, thermal (e.g. for setting up the ideal temperature conditions) and electrical energy are required. Depending 

on the actual configuration of the plant, both demands can be meet by using internal solutions for energy provision (i.e. 

CHP unit). Since the GHG methane has a much higher climate efficiency than, for example, CO2, the magnitude of 

these emissions can decisively influence the overall result. In digester operation, leakages and disturbances can lead to 

methane leaks. Such leakages are caused by a multiplicity of influencing factors: the available scientific literature 

sources typically indicate diffuse methane emissions of 1% ca. for the process of biogas production (Bachmaier et al., 

2007; Müller-Langer et al., 2009). Significant differences can occur between the different processes of biogas 

upgrading. GHG emissions are associated with the whole production chain, i.e. substrate transportation, digestate 

spreading, biogas production, upgrading of biogas to biomethane. In this study the evaluation of the specified 

biomethane plant was verified on the basis of comprehensive measurements and experience data showing significant 

improvements. Greenhouse gas emissions estimated for the various process stages for the Sclafani Bagni plant showed, 
that methane upgrading emits 1.95 kg CO2-eq/Nm3, while other processes totally emits 0.525 kg CO2-eq/Nm3. 

Transportation process (including all types of feedstock) accounts for 0.325 kg CO2-eq/Nm3. 

As expected, depending on the high amount of the substrate and long distance transported (150 km), Citrus waste 

substrate transport accounts for the largest share in GHG emissions (Fig 3) reaching emissions of 0.229 kg CO2-eq/Nm3 

or 70.5 % of total transportation emission. Instead cattle manure and slurry, triticale silage and waste from vegetable 

cleaning account for negligible shares in GHG emissions. Thus, designing waste treatment technologies, the distance 

and energy value of feedstock must be taken into consideration, otherwise the sustainable system could become harmful.  
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Figure 2. Greenhouse gas (GHG) emissions estimated for the various process stages for the Sclafani Bagni plant. 

 

 
Figure 3. Greenhouse gas (GHG) emissions estimated for the various feedstock transportation processes. 

 

A direct comparison of the results achieved in this study with previous LCA literature is challenging, due to differences 
in the selection of F.U., system boundaries, impact assessment methods and the modelled sources of avoided burdens and in 

the process yields, which vary according to local conditions and technologies levels. However, the results achieved by Florio 

et al. (2019), whose study was aimed at assessing the environmental costs and benefits of different uses of biogas, by 

comparing upgrading technologies for biomethane production with the conventional on-site cogeneration, show a better 

environmental performance of the cogeneration option in most of the impact categories and highlight the benefits that can be 

gained in each impact category by means of substitution of natural gas with biomethane. At the same time, these results, based 

on the 1 m3 of biogas as F.U., show a significant share of environmental impact generated by the fate of digestate produced 

as AD co-product: substantial savings in terms of environmental impact can be obtained by using the digestate as fertiliser, 

thus avoiding the impact of fossil-based synthetic fertilisers. This result confirms that substrate choice is important in the 

management of biogas life cycle impacts. Poeschl et al. (2012), for instance, calculated that biogas from straw feedstock could 

achieve up to a ten times higher impact reduction in Global Warming Potential compared to cattle manure. Therefore, the 

composition of the mix of waste sources for AD may determine significant variations in all environmental impact categories.  
 

CONCLUSIONS AND DISCUSSION 

 

The following measures are needed in order to minimise the environmental impact of Anaerobic Digestion plants: 

- installing a flare to avoid discharge of biogas to the atmosphere during outages of the combined CHP unit and reducing 

methane leakage; 

- covering the storage tank for digestate and collecting the residual biogas production; 

- minimising the electricity demand of the biogas plant and supplying it from low-emission sources; 

- using as much heat output from the CHP unit as possible to substitute fossil energy carriers; 

- employing high-efficiency CHP units, possibly with additional exhaust gas treatment; 

- checking the AD plant for leakages on a regular basis (Hijazi et al., 2016). 
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Natural gas is classified as fossil fuel, whereas biomethane is defined as a green source of energy. Like its name 

suggests, fossil fuel derived methane is produced from thousands or millions of years. Production of fossil fuel derived 

methane, however, depends exclusively on its natural reserves, which highly vary from one country to another and are 

available in limited amounts. The biomethane, conversely, is produced from organic matter, which makes it a renewable 

source of energy that can be produced worldwide. 

The use of biomethane or renewable natural gas has a great potential with important socio-economic benefits. 

Moreover, taking into account the environmental assessment, the main conclusions are the following: 

- the stage with a major environmental significance throughout the life cycle of the product under study is methane 

upgrading with GHG emissions of about 2 kg CO2-eq/Nm3, while the stage with the lowest environmental impact is 
digestate spreading with about 0 kg CO2-eq/Nm3; 

- taking into account the CO2 capture from manure, the negative total impact of biogas production and upgrading processes 

means that the manure has captured more CO2 than all the process consumptions together, e.g. electricity, water and 

chemical products; 

- the results for the LCA of the system confirmed the negative total impact of the process with grid injection, in terms of 

kg of CO2 eq.: the LCA verified the carbon-negative-bio-energy concept of the project. 

Therefore, biomethane derived from biogas is an entirely renewable and readily available low carbon alternative fuel, 

that can be locally produced from organic waste and capable to replace the fossil natural gas in the near future. 

Biomethane is currently the most important renewable option for gas supplies and is fully compatible with natural gas. 

The most effective measure which can be implemented in order to reduce GHG emissions in substrate production is to use 

the digestate as a fertiliser, allowing the replacement of 100% of K and P fertilisers, as well as 60% of the N fertiliser, which 

is associated with the highest GHG emissions. 
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