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Litter production is a key parameter for estimation of forest soil carbon (C) stock. The aim of the study was to evaluate carbon stock 

in above and below-ground litter in forests with drained and naturally wet nutrient-rich organic soils in Latvia to improve National 

GHG inventory and to integrate data into AGM and EPIM models. To estimate C input with tree above-ground litter, sampling of litter 

was done in 46 research sites in Latvia. A modelling approach based on a literature review was used to estimate C input with tree 

below-ground litter and litter of ground vegetation. Our study highlights a connection between C input to soil with litter and stand 

characteristics – stand basal area, stand age and dominant tree species. There is a trend for C input from above- and below- ground 

litter to increase along with increasing stand basal area. In conifer stands the C input with ground vegetation increased with stand basal 

area, whereas for broadleaves the trend is reverse. There is still uncertainty regarding C input with below-ground litter and ground 

vegetation. In order to improve the modeling approach additional data and country-specific models are required. 
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INTRODUCTION 

 

Organic soils store large amounts of carbon (C) and can be both sinks and sources of greenhouse gases (GHG), 

depending on land management practice (Turunen et al., 2002; Yu et al., 2010). Drainage of soils lowers the emissions 

of methane (CH4), but simultaneously it increases those of carbon dioxide (CO2) and nitrous oxide (N₂O) (Jauhiainen et 

al. 2019). In many European countries drained peatlands are one of the largest sources of GHG emissions from agriculture 

and forestry (Drösler et al., 2008; Tubiello et al., 2016,). Drained organic soils in forest land in Latvia comprise about 

384.76 kha and are considered a major source of GHG emissions in the Land Use, Land Use Change, and Forestry 

(LULUCF) sector. Naturally wet organic soils comprise about 334.6 kha in Latvia and emissions from these soils are not 

calculated according to methodology so far elaborated for Latvia (Latvia’s National Inventory Report., 2021). GHG 

emission factors from drained and naturally wet organic soils have relatively high uncertainty rate and regions of the same 

climate zone display significant differences (Lazdiņš and Lupiķis, 2019). Carbon stocks of different pools in forests need 

to be estimated with high accuracy due to the increasing need for recommendations for climate change mitigation 

measures in the LULUCF sector.  

Litter production is a crucial parameter for estimation of forest soil C stock and its changes responding to climate 

change or management (Wutzler and Mund 2007, Feng et al. 2019). The process of litter decomposition drives C and 

other nutrient cycles in forest soils. GHG assessments would also benefit from accurate litter production data (Neumann 

et al. 2018). Litter can be divided in two major groups – above ground parts of plants, i.e., branches, leaves, reproductive 

organs etc., and below-ground organs – coarse and fine roots.  Fine roots are non-woody roots 2 mm or less in diameter 

and they represent the main fraction of below-ground litter (Lehtonen 2005, Mccormack et al. 2015). Coarse roots produce 

relatively low amounts of litter over a short period of time because of slow turnover rates, therefore they are often excluded 

from below-ground litter estimation. It is challenging to quantify below-ground litter as roots are buried in soil and their 

collection (excavation) is time consuming and may cause artifacts. For this reason, modeling approach is widely applied 

to determine fine root biomass and turnover from easily measurable stand parameters, such as leaf area index (LAI), 

foliage and above-ground biomass and others (Liu et al. 2004, Yuan et al. 2018). Kriiska et al. (2021) found that the 

decomposition model for green tea can be used to determine the rate of the fine root decomposition. 
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Ground vegetation is another crucial yet often neglected component of forest ecosystems regarding litter and C 

budgets. The share of C stock in forests in ground vegetation ranges from 4% to 13% (Mälkönen, 1974; Havas and Kubin, 

1983). Because of the easily decomposable litter and fast turnover ground vegetation contributes significantly to nutrient 

cycles in forests, despite constituting only a small proportion of biomass (Mälkönen, 1974; Palviainen et al., 2005). Forest 

stands undergo structural changes during their development, which changes light availability to the understory, therefore 

stand age is a significant predictor of ground vegetation and can be used as an input attribute in modelling approach 

(Muukkonen and Mäkipää, 2006).  

The aim of the study was to determine the impact of above- and below-ground as well as ground vegetation litter 

turnover on C cycling in forests with drained and naturally wet nutrient-rich organic soils in Latvia to improve National 

GHG inventory and to integrate data into AGM and EPIM models. 

 

STUDY SITES AND METHODS 

 

The study was conducted in 46 research sites in Latvia. Tree above-ground litter were collected in 67 research 

sites representing typical forests with drained and naturally wet organic soils in hemiboreal region. The forest site types 

on drained organic soils are Callunosa turf. mel. (relatively low soil fertility), Vacciniosa turf. mel. (moderate soil 

fertility), Myrtillosa turf. mel. (relatively high soil fertility), and Oxalidosa turf. mel. (relatively high soil fertility), but 

forest site types on naturally wet organic soils are Dryopterioso–caricosa and Filipendulosa (relatively high soil fertility) 

based on Bušs (1981). The research sites were dominated by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies 

(L.) H.Karst.), Silver birch (Betula pendula Roth) and Black alder (Alnus glutinosa).  

Tree above-ground litter was collected monthly using 5 collectors placed randomly in each site over a period of 1 

year. Collector design was the following: the collecting area of individual traps – 0.42 m2, solid funnel (0.7 m deep) with 

nylon bag with mesh size of 0.2 mm. At the laboratory, dry matter of litter was determined by drying samples at 105°C 

temperature. Total C concentration of the ground litter samples (dried at 70 °C temperature) were determined by total 

combustion at 950 °C with elemental analyzer Elementar EL Cube according to the LVS ISO 10694:2006 and ISO 

13878:1998, respectively.  

A model to estimate fine root biomass was chosen from the compilation of Neumann et al. (2019), where stem 

biomass is required as input data (given in equation 1). 
 

 𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑡 ℎ𝑎−1) = 𝑠𝑡𝑒𝑚 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑡 ℎ𝑎−1) × 0.02  (1) 
 

Next, the biomass value was multiplied by fine root turnover rate (yr-1) to calculate the annual tree below-ground 

litter input. We used the turnover rates in boreal forests for Betula (1.22 ± 0.56), broadleaves (1.15 ± 0.23), Picea (0.84 

± 0.07) and Pinus (0.61 ± 0.17) from the review of Yuan and Chen (2010). The C content in biomass was assumed 51% 

for conifers and 48% for broadleaves (Lamlom and Savidge 2003, IPCC 2006).  

We used the equations from the study of Muukkonen and Mäkipää (2006). Ground vegetation biomass (kg ha–1) 

was calculated for spruce, pine, alder and birch forest stands and separately for each plat form: mosses, lichens, dwarf-

shrubs, herbs and grasses (equations 2-11). The input variable is stand age in years. 

Pine forest stands: 

Above-ground biomass (y), dwarf shrubs: 
 

 √𝑦 + 0.5 = 16.68 +  0.129 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 +  0.0004 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒2 (2) 

 

Above-ground biomass (y), herbs and grasses: 
 

 
 

√𝑦 + 0.5 =  11.725 –  0.098 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 +  0.0002 x stand age2  (3) 

Above-ground biomass (y), mosses: 
 

 √𝑦 + 0.5 = 27.329 +  0.138 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 –  0.0005 x  𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒2 (4) 

Above-ground biomass (y), lichens: 
 

 √𝑦 + 0.5 = 7.975 –  0.0002 x  𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒2 (5) 

Spruce forest stands: 

Above-ground biomass (y), dwarf-shrubs: 
 

 √𝑦 + 0.5 =  10.375 −  0.033 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 +  0.001 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒2  

−  0.000004 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒3 

(6) 

 

Above-ground biomass, herbs and grasses: 
 

 √𝑦 + 0.5 = 15.058 –  0.113 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔e +  0.0003 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒2 (7) 
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Above-ground biomass (y), mosses: 
 

 √𝑦 + 0.5 = 19.282 +  0.164 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 –  0.000001 x  𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒3 (8) 

 

Broad-leaved forest stands: 

Above-ground biomass (y), dwarf-shrubs: 
 

 √𝑦 + 0.5 = 7.102 +  0.0004 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒2 (9) 

 

Above-ground biomass (y), herbs and grasses: 
 

 √𝑦 + 0.5 =  20.58 –  0.423 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 + 0.004 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔e2  

−  0.00002 x 𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒3 

(10) 

 

Above-ground biomass (y), mosses: 
 

 √𝑦 + 0.5 = 13.555 –  0.056 ∗  𝑠𝑡𝑎𝑛𝑑 𝑎𝑔𝑒 (11) 

 

To calculate above-ground vegetation litter, the obtained values were multiplied by the turnover rates of the 

respective plant forms - 0.25 for dwarf-shrubs, 1 for herbs and grasses, 0.33 for mosses and 0.1 for lichens (Muukkonen 

2006). It was assumed that the proportion of the ground vegetation biomass located in the below-ground parts is 70% of 

the total biomass (Mälkönen 1974, Palviainen et al. 2005). To calculate C input with ground vegetation litter, it was 

assumed that the C fraction in biomass is 0.475 (FAO 2005). 

 

RESULTS AND DISCUSSION 

 

The average annually produced biomass of tree above-ground litter was within the range from 0.61± 0.14 t ha-1 yr-1 

in a Norway spruce stand, which is the youngest forest stand included in the study and characterized with the lowest stem 

biomass and stand parameters, to 7.26 ± 0.37 t ha-1 yr-1 in another Norway spruce dominated stand with relatively high stem 

biomass parameters. Average annually produced biomass of tree above-ground litter in all research sites was 3.76 ± 0.23 t 

ha-1 yr-1. The amount of above-ground litter varies, depending on dominant tree species and stand age. For Black alder and 

Norway spruce there is a trend for the amount of above-ground litter to increase with stand age, whereas for Silver birch the 

increase is negligible and for Scots pine there is a slight decrease. Neumann et al. (2018) estimated that the average annual 

above-ground litter production rate for Fennoscandia and Baltic states (mainly for boreal forests) is 3.22 ± 2.01 t ha-1 yr-1 for 

conifers and 2.76 ± 1.27 t ha-1 yr-1 for broadleaves. The average value of our estimated litter input falls within their estimates, 

however in the Norway spruce stands the amount exceeds the value for conifer stands about 2.6 times.  

Annual C input through tree above-ground litter is shown in Figure 1. There is a trend for litter biomass and C 

input to increase along with increasing stand basal area. In stands with a basal area ranging from 2.5 to 50 m2 ha-1, the 

highest total C annual input was estimated in Norway spruce dominated stands with a basal area of 40 m2 ha-1, but the 

smallest total annual C input was estimated in Scots pine and Black alder dominated stands, respectively, with a basal 

area of 5.25 and 2.52 m2 ha-1 (Figure 1). Generally, C content in conifer trees is larger than that in broadleaves because 

of higher lignin content in the former (Lamlom and Savidge, 2003). Exceptions have been observed in northern Europe, 

which is also stated in our results (Neumann et al., 2018).  

 

 
Figure 1. Annual C input with tree above-ground litter in forest stands with different dominant tree species depending on stand basal area 
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Modeled C annual input through tree below-ground (fine root) litter is shown in Figure 2. In Silver birch dominated 

stands the average annual C input was 1.43± 0.16 t ha-1 yr-1, in Black alder dominated stands – 0.88 ± 0.30 t ha-1 yr-1, in 

Norway spruce dominated stands – 1.04 ± 0.12 t ha-1 yr-1and in Scots pine dominated stands - 0.54 ± 0.12 t ha-1 yr-1. The 

highest annual C input (3.70 t ha-1 yr-1) was estimated in a Silver birch stand at age of 68 years, but the lowest C input 

was estimated in a young stand of Black alder, 10 years age (0.069 ha-1 yr-1). According to a Swedish study, the input of 

C with fine root litter was the highest in spruce stands (1.3 t C ha-1 yr-1), whereas in pine stands it was 1.06 t C ha-1 yr-1 

and in birch stands - 0.77 t C m-2 yr-1 (Hansson et al. 2011). Results show a positive trend for C input of fine-root litter to 

increase along with stand basal area. The trend is more pronounced in Silver birch stands. Also the amount of fine-root 

litter and therefore – C input is higher in Silver birch stands.  

Our average estimates are lower than those in results of other studies carried out in the boreal region. The reason 

for overestimation and underestimation could be the lack of availability of LAI or foliage biomass data. Estimation models 

with these parameters as input date would provide more accurate results. Our estimated results will be compared with 

fine root litter measurements from ingrowth cores. 

 

 
Figure 2. Annual C input with fine-root litter in forest stands with different dominant tree species depending on stand basal area 

 

The total modeled C annual input through ground vegetation litter (herbs, grasses, dwarf shrubs, mosses and 

lichens) is shown in Figure 3. The average annual C input through above-ground and below-ground litter of ground 

vegetation was 0.28 ± 0.01 t ha-1 yr-1 in Silver birch dominated stands, 0.34 ± 0.05 t ha-1 yr-1 in Black alder stands, 0.61 ± 

0.0010 t ha-1 yr-1 in Norway spruce stands and 1.04 ± 0.06 t ha-1 yr-1in Scots pine stands. 

 

 
Figure 3. Annual C input with ground vegetation litter in forest stands with different dominant tree species depending on stand basal area 
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In Silver birch and Black alder stands, the largest share of C input through above-ground litter of ground vegetation 

constitute herbs and grasses (68 and 70% of total C input, respectively). The second largest share of C input through 

above-ground litter of ground vegetation forms mosses (22% of total C input). In Scots pine and Norway spruce stands, 

the largest share of C input through above-ground litter of ground vegetation forms mosses (55% and 63 of total C input, 

respectively). In Scots pine stands a significant share constitute dwarf-shrubs (34%). 

Previous studies show that forest stand age strongly influences ground vegetation composition, mainly because of 

differences in canopy cover (Bäcklund et al. 2015, Majasalmi and Rautiainen, 2020). The lower vegetation litter 

production in the birch stands and broadleaf stands in general could be explained by lower light availability as a result of 

a denser canopy. Differences in light availability to ground vegetation could also explain differences between pine and 

spruce-dominated stands. The study carried out by Muukkonen and Mäkipää (2006) indicates that equations including 

site attributes, such as latitude, longitude, temperature sum, nutrient level, elevation, number of trees per ha, basal area, 

stem volume and stand age would offer more accurate estimates than using equations with stand age alone as input alone. 

However, these detailed equations were developed as country-specific and could be applied only in Finland. In order to 

improve our estimates, it is necessary to develop country-specific biomass equations for ground vegetation for forests in 

Latvia. 

 

CONCLUSIONS 

 

1. There is a trend for above- and below- ground litter biomass and C input to increase along with increasing stand basal 

area. The effect on stand age vary between tree species. 

2. In conifer stands the C input with ground vegetation increases with stand basal area, whereas for broadleaves there 

is a slightly decreasing trend. It might be caused by different light levels reaching ground vegetation through canopy. 

3. The improvement of the modeling approach to estimate C stock in tree below-ground and vegetation litter requires 

additional data (such as input variables) and country-specific models. 
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