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Abstract

Layered materials are used as cases of some types of agricultural machines and devices. They have an advantage
in the transmission and suppression of some types of vibrations in the process of operation of those machines. In
this paper a layered beam type structure is investigated. It is assumed that layers are of two types: 1) of the beam
type and 2) of the elastic body type. Usually, the lower and upper layers are of beam type and the internal layer
is of elastic body type. Finite element models of the layer of beam type as well as of the layer of elastic body
type are developed and described in the paper. Based on them finite element of a layered beam is obtained.
Eigenmodes of the beam of this type are calculated and investigated. The presented results are applicable in the
process of design of elements of agricultural machines and other engineering devices.
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1. Introduction

Layered materials are used as cases of some types of agricultural machines and devices. They have
an advantage in the transmission and suppression of some types of vibrations in the process of
operation of those machines.

In this paper a layered beam type structure is investigated. It is assumed that layers are of two
types: 1) of the beam type and 2) of the elastic body type. Usually, the lower and upper layers are of
beam type and the internal layer is of elastic body type.

Finite element models of the layer of beam type as well as of the layer of elastic body type are
developed and described in detail in this paper. Based on them finite element of a layered beam having
the lower and upper layers of beam type and the internal layer of elastic body type is obtained.
Eigenmodes of the beam of this type are calculated and investigated.

The presented results are applicable in the process of design of elements of agricultural machines
and other engineering devices.

Basic models for analysis of elastic structures by using the method of finite elements are presented
in (Zienkiewicz, 1975) and (Bathe, Wilson, 1982). Vibrations of beams are investigated in (Pany,
2023), (Pany, Rao, 2002), (Pany, Rao, 2004) and in many other related papers. Theoretical analysis of
vibrations in mechanical engineering is presented in (Blekhman, 2018). Mechanisms having beams as
their elements in the structures of robots are described in (Glazunov, 2018). Vibrations of
transmissions are investigated in (Kurila, Ragulskiené, 1986). Essentially nonlinear vibrations are
analyzed in (Ragulskiene, 1974).

First the model of layer of beam type is described in detail, then the model of layer of elastic body
type is described in detail. Finally, the finite element of a layered beam with external layers of beam
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type and internal layer of elastic body type is obtained. Based on the presented material eigenmodes of
the layered beam are represented graphically and described.

2. Model of the layer of beam type

Three nodal parameters are assumed: displacement in the direction of the y axis vi, displacement
of the lower surface in the direction of the x axis u; and displacement of the upper surface in the
direction of the x axis u».

Displacement of the middle line of the layer in the direction of the x axis u and displacement of the
middle line of the layer in the direction of the y axis v are expressed as:
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where {5 } is the vector of nodal displacements and:
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where Vi, ... are shape functions of the finite element.
Rotation of the middle line of the layer @ is expressed as:
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where b is semi thickness of the layer.

If the structure experiences static displacements, then the longitudinal stress multiplied by the
cross-sectional area of the layer M, is calculated:
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where E is the modulus of elasticity of the layer, a is the semi width of the layer and {5 } is the vector

of nodal static displacements.

Then the stiffness matrix of the layer has the form:
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where G = 2 (1E ) is the shear modulus of the layer and v is the Poisson’s ratio of the layer.
+v
The mass matrix of the layer has the form:
4ab’

(1= J{ 0T bl [T paa e 0] o2, G

where p is the density of the material of the layer.
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3. Model of the layer of elastic body type

Four nodal parameters are assumed: displacement of the lower surface in the direction of the x axis
u1, displacement of the lower surface in the direction of the y axis vi, displacement of the upper surface
in the direction of the x axis u, and displacement of the upper surface in the direction of the y axis v».

Displacement in the direction of the x axis u and displacement in the direction of the y axis v are

expressed as:
u| 2b-y|u y u
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where b is semi thickness of the layer, upper dash denotes quantities on the lower surface of the layer
and double upper dash denotes quantities on the upper surface of the layer. Thus:
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where {5} is the vector of nodal displacements and:
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where Vi, ... are shape functions of the finite element. Also:
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If the structure experiences static displacements, then supplementary stiffness from them is

calculated. Thus, the quantity ? is expressed as:
X

2By ® (22051215 (1)
ox 2b dx 2bdx 2b 2b

where {5 } is the vector of nodal static displacements and:
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Strains are calculated as:
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Matrix of elastic constants is assumed as:
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where a is the semi width of the layer, £ is the modulus of elasticity of the layer and v is the Poisson’s
ratio of the layer.

Stresses {O'} multiplied by the width of the layer are calculated as:

{o}2a=[D]{e}, (22)
and then the quantity M, is calculated:
M_=o02a, (23)

where oy is the longitudinal stress, that is it is the first component of the vector {O'}.
Then the stiffness matrix of the layer has the form:
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The mass matrix of the layer has the form:
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where p is the density of the material of the layer.

Here values of the following integrals were used:
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4. Model of the layered beam

Six nodal parameters are assumed: displacement of the lower beam in the direction of the y axis
vi2, displacement of the lower surface of the lower beam in the direction of the x axis u;, displacement
of the upper surface of the lower beam in the direction of the x axis u,, displacement of the upper beam
in the direction of the y axis vs4, displacement of the lower surface of the upper beam in the direction
of the x axis u3 and displacement of the upper surface of the upper beam in the direction of the x axis
Ug.

The matrixes of the previously described layers are added to the corresponding places of the
matrixes of the finite element of a layered beam.

5. Investigation of eigenmodes of the layered beam

All displacements on the left end of the layered beam are assumed to be equal to zero. On the right
end of the layered beam displacements in the direction of the y axis are assumed to be equal to zero
and displacements in the direction of the x axis are assumed to be equal to one. Thus, first the static
problem is solved. Then the supplementary stiffness from the static solution is calculated and the
eigenmodes are obtained.

The following parameters of the layers of beam type are assumed:

E=6-10°, v=0.3, p=785, a=0.5, b=0.1. (30)
The following parameters of the layer of elastic body type are assumed:
E=0.6-10°, v=0.3, p=78.5, a=0.5 b=04. (31)

13



Eigenmodes are represented on the initial geometry of the structure. The first eigenmode is
presented in Fig. 1, the second eigenmode is presented in Fig. 2, ..., the eighth eigenmode is presented
in Fig. 8.

: Fig. 1. The first eigenmode of the layered beam :
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Fig. 2. The second eigenmode of the layered beam
Fig. 3. The third eigenmode of the layered beam
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Fig. 4. The fourth eigenmode of the layered beam
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Fig. 5. The fifth eigenmode of the layered beam
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Fig. 6. The sixth eigenmode of the layered beam
Fig. 7. The seventh eigenmode of the layered beam
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Fig. 8. The eighth eigenmode of the layered beam

From the presented results it is seen that there are eigenmodes of predominantly longitudinal
vibrations as well as there are eigenmodes of predominantly transverse vibrations. Substantially
different behaviors of the lower and upper layers of beam type and the internal layer of elastic body
type are observed.

6. Conclusions

Layered materials are used as cases of some types of agricultural machines and devices. They have
an advantage in the transmission and suppression of some types of vibrations in the process of
operation of those machines. In this paper a layered beam type structure is investigated. It is assumed
that layers are of two types: 1) of the beam type and 2) of the elastic body type.

Finite element models of the layer of beam type as well as of the layer of elastic body type are
developed and described. Based on them finite element of a layered beam is obtained. Eigenmodes of
the beam of this type are calculated and investigated. From the presented results it is seen that there
are eigenmodes of predominantly longitudinal vibrations as well as there are eigenmodes of
predominantly transverse vibrations. Substantially different behaviors of the lower and upper layers of
beam type and the internal layer of elastic body type are observed from the presented graphical results
of the first eigenmodes of the investigated structure.

The presented results are applicable in the process of design of elements of agricultural machines
and devices.
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