
9 

 

 ISSN 1392-1134/ eISSN 2345-0371 

  AGRICULTURAL ENGINEERING 

2025, Vol. 57, 9-16 p. 

https://doi.org/10.15544/ageng.2025.57.2 

 

INVESTIGATION OF VIBRATIONS OF LAYERED ELEMENTS OF 

AGRICULTURAL MACHINES 

 
Jūratė Ragulskienė1, Arvydas Pauliukas2, Petras Paškevičius3, Rimas Maskeliūnas4,  

Vytautas Maskeliūnas5, Anatolii Korpach
6
, Liutauras Ragulskis7 

1Kaunas University of Technology, Kaunas, Lithuania 
2Vytautas Magnus University, Akademija, Kaunas District, Lithuania 

3Company “Vaivora”, Kaunas, Lithuania 
4, 5Vilnius Gediminas Technical University, Vilnius, Lithuania 

6
National Transport University, Kyiv, Ukraine 

7Vytautas Magnus University, Kaunas, Lithuania 

 
Abstract 

 

Layered materials are used as cases of some types of agricultural machines and devices. They have an advantage 

in the transmission and suppression of some types of vibrations in the process of operation of those machines. In 

this paper a layered beam type structure is investigated. It is assumed that layers are of two types: 1) of the beam 

type and 2) of the elastic body type. Usually, the lower and upper layers are of beam type and the internal layer 

is of elastic body type. Finite element models of the layer of beam type as well as of the layer of elastic body 

type are developed and described in the paper. Based on them finite element of a layered beam is obtained. 

Eigenmodes of the beam of this type are calculated and investigated. The presented results are applicable in the 

process of design of elements of agricultural machines and other engineering devices. 
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1. Introduction 

 

Layered materials are used as cases of some types of agricultural machines and devices. They have 

an advantage in the transmission and suppression of some types of vibrations in the process of 

operation of those machines. 

In this paper a layered beam type structure is investigated. It is assumed that layers are of two 

types: 1) of the beam type and 2) of the elastic body type. Usually, the lower and upper layers are of 

beam type and the internal layer is of elastic body type. 

Finite element models of the layer of beam type as well as of the layer of elastic body type are 

developed and described in detail in this paper. Based on them finite element of a layered beam having 

the lower and upper layers of beam type and the internal layer of elastic body type is obtained. 

Eigenmodes of the beam of this type are calculated and investigated. 

The presented results are applicable in the process of design of elements of agricultural machines 

and other engineering devices. 

Basic models for analysis of elastic structures by using the method of finite elements are presented 

in (Zienkiewicz, 1975) and (Bathe, Wilson, 1982). Vibrations of beams are investigated in (Pany, 

2023), (Pany, Rao, 2002), (Pany, Rao, 2004) and in many other related papers. Theoretical analysis of 

vibrations in mechanical engineering is presented in (Blekhman, 2018). Mechanisms having beams as 

their elements in the structures of robots are described in (Glazunov, 2018). Vibrations of 

transmissions are investigated in (Kurila, Ragulskienė, 1986). Essentially nonlinear vibrations are 

analyzed in (Ragulskienė, 1974). 

First the model of layer of beam type is described in detail, then the model of layer of elastic body 

type is described in detail. Finally, the finite element of a layered beam with external layers of beam 
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type and internal layer of elastic body type is obtained. Based on the presented material eigenmodes of 

the layered beam are represented graphically and described. 

 

2. Model of the layer of beam type 

 

Three nodal parameters are assumed: displacement in the direction of the y axis v12, displacement 

of the lower surface in the direction of the x axis u1 and displacement of the upper surface in the 

direction of the x axis u2. 

Displacement of the middle line of the layer in the direction of the x axis u and displacement of the 

middle line of the layer in the direction of the y axis v are expressed as: 
 

 
 

 ,
u

v

Nu

Nv


  
=   

   
 (1) 

where    is the vector of nodal displacements and: 
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where N1, … are shape functions of the finite element. 
 

Rotation of the middle line of the layer   is expressed as: 

 

  ,N =  (3) 

where: 

  1 1

1 1
0 ,

2 2
N N N

b b


 
= − 
 

 (4) 

where b is semi thickness of the layer. 

 

If the structure experiences static displacements, then the longitudinal stress multiplied by the 

cross-sectional area of the layer Mσ is calculated: 

 

 4 ,u
dN

M E ab
dx

 
 

=  
 

 (5) 

where E is the modulus of elasticity of the layer, a is the semi width of the layer and    is the vector 

of nodal static displacements. 

 

Then the stiffness matrix of the layer has the form: 
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  (6) 

where 
( )2 1

E
G


=

+
 is the shear modulus of the layer and ν is the Poisson’s ratio of the layer. 

 

The mass matrix of the layer has the form: 

             
34

4 4 ,
3
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 
= + + 

 
  (7) 

where ρ is the density of the material of the layer. 
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3. Model of the layer of elastic body type 

 

Four nodal parameters are assumed: displacement of the lower surface in the direction of the x axis 

u1, displacement of the lower surface in the direction of the y axis v1, displacement of the upper surface 

in the direction of the x axis u2 and displacement of the upper surface in the direction of the y axis v2. 

Displacement in the direction of the x axis u and displacement in the direction of the y axis v are 

expressed as: 

2
,

2 2

u u ub y y

v vb b v

    −
= +     

     
 (8) 

where b is semi thickness of the layer, upper dash denotes quantities on the lower surface of the layer 

and double upper dash denotes quantities on the upper surface of the layer. Thus: 

 ,
u

N
v


 

 =   
 

 (9) 

where    is the vector of nodal displacements and: 
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where N1, … are shape functions of the finite element. Also: 
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where: 
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Strains are expressed as: 
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where: 
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If the structure experiences static displacements, then supplementary stiffness from them is 

calculated. Thus, the quantity 
v

x




 is expressed as: 
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where    is the vector of nodal static displacements and: 
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Strains are calculated as: 
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Matrix of elastic constants is assumed as: 

 

 

( )
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
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 (21) 

  

where a is the semi width of the layer, E is the modulus of elasticity of the layer and ν is the Poisson’s 

ratio of the layer. 

 

Stresses    multiplied by the width of the layer are calculated as: 

    2 ,a D =  (22) 

and then the quantity Mσ is calculated: 

2 ,
x

M a =  (23) 

where σx is the longitudinal stress, that is it is the first component of the vector  .  

Then the stiffness matrix of the layer has the form: 

 



13 
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The mass matrix of the layer has the form: 

 

 
2 2 2 2
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where ρ is the density of the material of the layer. 

 

Here values of the following integrals were used: 
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= 

 
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4. Model of the layered beam 

 

Six nodal parameters are assumed: displacement of the lower beam in the direction of the y axis 

v12, displacement of the lower surface of the lower beam in the direction of the x axis u1, displacement 

of the upper surface of the lower beam in the direction of the x axis u2, displacement of the upper beam 

in the direction of the y axis v34, displacement of the lower surface of the upper beam in the direction 

of the x axis u3 and displacement of the upper surface of the upper beam in the direction of the x axis 

u4. 

The matrixes of the previously described layers are added to the corresponding places of the 

matrixes of the finite element of a layered beam. 

 

5. Investigation of eigenmodes of the layered beam 

 

All displacements on the left end of the layered beam are assumed to be equal to zero. On the right 

end of the layered beam displacements in the direction of the y axis are assumed to be equal to zero 

and displacements in the direction of the x axis are assumed to be equal to one. Thus, first the static 

problem is solved. Then the supplementary stiffness from the static solution is calculated and the 

eigenmodes are obtained. 

The following parameters of the layers of beam type are assumed: 
86 10 ,  0.3,  785,  0.5,  0.1.E a b =  = = = =  (30) 

The following parameters of the layer of elastic body type are assumed: 
80.6 10 ,  0.3,  78.5,  0.5,  0.4.E a b =  = = = =  (31) 
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Eigenmodes are represented on the initial geometry of the structure. The first eigenmode is 

presented in Fig. 1, the second eigenmode is presented in Fig. 2, …, the eighth eigenmode is presented 

in Fig. 8. 

 

 
Fig. 1. The first eigenmode of the layered beam 

 

 
Fig. 2. The second eigenmode of the layered beam 

 

 
Fig. 3. The third eigenmode of the layered beam 

 

 
Fig. 4. The fourth eigenmode of the layered beam 

 

 
Fig. 5. The fifth eigenmode of the layered beam 
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Fig. 6. The sixth eigenmode of the layered beam 

 

 
Fig. 7. The seventh eigenmode of the layered beam 

 

 
Fig. 8. The eighth eigenmode of the layered beam 

 

From the presented results it is seen that there are eigenmodes of predominantly longitudinal 

vibrations as well as there are eigenmodes of predominantly transverse vibrations. Substantially 

different behaviors of the lower and upper layers of beam type and the internal layer of elastic body 

type are observed. 

 

6. Conclusions 

 

Layered materials are used as cases of some types of agricultural machines and devices. They have 

an advantage in the transmission and suppression of some types of vibrations in the process of 

operation of those machines. In this paper a layered beam type structure is investigated. It is assumed 

that layers are of two types: 1) of the beam type and 2) of the elastic body type. 

Finite element models of the layer of beam type as well as of the layer of elastic body type are 

developed and described. Based on them finite element of a layered beam is obtained. Eigenmodes of 

the beam of this type are calculated and investigated. From the presented results it is seen that there 

are eigenmodes of predominantly longitudinal vibrations as well as there are eigenmodes of 

predominantly transverse vibrations. Substantially different behaviors of the lower and upper layers of 

beam type and the internal layer of elastic body type are observed from the presented graphical results 

of the first eigenmodes of the investigated structure. 

The presented results are applicable in the process of design of elements of agricultural machines 

and devices. 
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