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Abstract

Mechanism for transformation of vibrating motion into translational using the self-stopping device is proposed in
the paper. Model of the investigated system is described. Numerical investigations for various parameters of the
investigated system are performed and typical graphical relationships are presented. Dynamics of vibrational
transportation is investigated, and the obtained results are used in the process of design of mechanisms of the
proposed type. Mechanisms of the proposed type can be used in elements of manipulators and robots, including
pipe robots and other devices used in agricultural engineering.
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1. Introduction

Mechanism for transformation of vibrating motion into translational using the self-stopping device
is proposed in the paper.

Model of the investigated system is described. Numerical investigations for various parameters of
the investigated system are performed and typical graphical relationships are presented. Dynamics of
vibrational transportation is investigated.

The obtained results are used in the process of design of mechanisms of the proposed type.
Mechanisms of the proposed type can be used in elements of manipulators and robots, including pipe
robots and other devices used in agricultural engineering.

The investigated element of agricultural machines is shown in Fig. 1.
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Fig. 1. The investigated element of agricultural machines



Vibrational motions are investigated in (Blekhman, 2018), (Kibirkstis et al., 2018), (Kurila,
Ragulskiené, 1986), (Ragulskiené, 1974), (Ragulskis et al., 1965), (Spedicato, Notarstefano, 2017),
(Sumbatov, Yunin, 2013).

Dynamics of robots is investigated in (Glazunov, 2018), (Bolotnik et al., 2016), (Ragulskis et al.,
2020), (Ragulskis et al., 1987), (Ragulskis, Spruogis, Paskevicius et al., 2021), (Ragulskis, Spruogis,
Pauliukas et al., 2021), (Bansevicius et al., 1985), (Spruogis et al., 2002).

First model of the investigated system with two degrees of freedom is described. Then results of
numerical investigation of steady state motions for various parameters of the system are presented and
conclusions about dynamic behavior of the investigated system are made.

2. Model of the investigated manipulator with vibrational drive
First model in the dimensional form is described. Further x; is the displacement of the vibrating

mass and x; is the displacement of the transported mass and the upper dot denotes differentiation with
respect to the time ¢, that is:
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It is assumed that the vibrating mass is excited by a harmonic force.
When the following condition is satisfied:
X, <X, 2)
then dynamics of the system is described by the equations presented further.
Dynamics of the exciting mass is described by the equation:
P, =mj + Hx, + Cx, — Fsinot — f, =0, 3)

where m; denotes the exciting mass, H denotes the coefficient of viscous friction, C denotes the
coefficient of stiffness, F' denotes the amplitude of harmonic excitation, @ denotes the frequency of

harmonic excitation, f, denotes the coefficient of dry friction.
Dynamics of the transported mass is described by the equation:

P, =m,¥, + B, — A+ f, =0, (4)

where m» denotes the transported mass, B denotes the coefficient of viscous friction, 4 denotes the
constant external force acting to the transported mass.
When the following condition is satisfied:

X =X, (5)
then dynamics of the investigated system is described by the equation:
B, + P, =mX, +m,%, + Hx, + Bx, + Cx, - Fsinwt - A=0. (6)

The equations are transformed to non-dimensional form by introducing the following notations:
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Thus, in non-dimensional parameters dynamics of the investigated system is described by the
equations presented further.
When the following condition is satisfied:
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then dynamics of the system is described by the equations:

L

F:xl"+hxl’+xl—fsinvr—f0=0, O]

%=,ux;'+bx;—a+f0=0. (10)

When the following condition is satisfied:
X =X, (11
then dynamics of the investigated system is described by the equation:

P, P .
%+%:x{’+yx;'+hx{+bx;+x1—fs1nvr—a=0. (12)

Numerical integration of the equations of motion is performed by using the Newmark constant
average acceleration procedure.

3. Investigation of steady state dynamics of the manipulator with vibrational drive
The following parameters of the investigated dynamical system are assumed:
v=Lf=1h=01/f =05 u=1,5b=0.1. (13)
Zero initial conditions are assumed:
xl(0)=0, xl'(O):O, x2(0)=0, x§(0)=0. (14)

Results for three values of the constant force are presented:

a=0, (15)
a=-0.2, (16)
a=0.2, (17)

thus, investigations are performed for the case when there is no constant force, when the value of the
constant force is negative and when the value of the constant force is positive.

3.1. Results of investigations when there is no constant force

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first
degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional
velocity of the second degree of freedom as functions of non-dimensional time are presented in Fig. 2.

Non-dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are presented in Fig. 3.

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented
in Fig. 4.

Phase trajectory of relative motion is presented in Fig. 5.
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Fig. 2. Dynamics of the investigated system for v =1, f =1, h=0.1, f, =0.5, u=1, b=0.1, a=0
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Fig. 3. Relative motions of the investigated system for v =1, f =1, h=0.1, f,; =0.5, u=1, b=0.1, a=0

3.2. Results of investigations when the constant force is negative

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first
degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional
velocity of the second degree of freedom as functions of non-dimensional time are presented in Fig. 6.

Non-dimensional relative displacement and non-dimensional relative velocity as functions of non-

dimensional time are presented in Fig. 7.

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented

in Fig. 8.

Phase trajectory of relative motion is presented in Fig. 9.
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Fig. 4. Phase trajectories of the investigated system for v =1, f =1, h=0.1, f, =0.5, u=1, b=0.1, a=0
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Fig. 5. Phase trajectory of relative motion of the investigated system for
v=Lf=1 h=0.171=05 u=1,5b=01a=0
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Fig. 6. Dynamics of the investigated system for v =1, f =1, h=0.1, f; =0.5, u=1, b=0.1, a=-0.2
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Fig. 7. Relative motions of the investigated system for v =1, f =1, h=0.1, f, =0.5, u=1, b=0.1, a =-0.2
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Fig. 8. Phase trajectories of the investigated system for

v=1f=1h=0.1f=05 u=1b=0.1, a=-02

X=X’
0.003 XX,

-0.765

-28.172 -26.013
Fig. 9. Phase trajectory of relative motion of the investigated system for
v=Llf=1h=01/( =05 u=1,5b=0.1a=-02

3.3. Results of investigations when the constant force is positive

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first
degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional
velocity of the second degree of freedom as functions of non-dimensional time are presented in Fig.
10.

Non-dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are presented in Fig. 11.

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented
in Fig. 12.
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Fig. 10. Dynamics of the investigated system for v =1, f =1, h=0.1, f, =0.5, =1, b=0.1, a=0.2
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Fig. 11. Relative motions of the investigated system for v =1, f =1, h=0.1, f; =0.5, u=1, b=0.1, a=0.2

Phase trajectory of relative motion is presented in Fig. 13.
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Fig. 12. Phase trajectories of the investigated system for v =1, f =1, h=0.1, £, =0.5, u=1, b=0.1, a=0.2



From the presented graphical results, it can be observed that the zones where the velocities of both
degrees of freedom are approximately equal depend on the value of the constant force. Substantial
dependence of the distance travelled by the second degree of freedom from the value of the constant
force is also seen.
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Fig. 13. Phase trajectory of relative motion of the investigated system for
v=Ll f=1h=01,f =05 u=1,5=0.1 a=0.2

4. Investigation of travelled distance in steady state regime of motion as function of frequency of
excitation

The travelled distance of the second degree of freedom during a period of excitation in steady state
regime of motion as function of frequency of excitation for the three values of the constant external

force is presented in Fig. 14.
From the presented results optimal frequency of excitation corresponding to maximum value of the

travelled distance is determined.
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Fig. 14. Travelled distance during a period of excitation in steady state regime of motion as function of
frequency of excitation



5. Conclusions

Mechanism for transformation of vibrating motion into translational using the self-stopping device
is proposed. Model of the investigated system is presented as well as numerical investigations for
various parameters of the system are performed and graphical relationships for typical parameters of
the investigated system are presented. Dynamics of precise vibrational transportation is investigated.

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first
degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional
velocity of the second degree of freedom as functions of non-dimensional time are presented. Non-
dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are also investigated. Phase trajectories of the first degree of freedom and of the
second degree of freedom are presented. Phase trajectory of relative motion is also investigated.
Investigations are performed for the case when there is no constant force, when the constant force is
negative and when the constant force is positive.

From the presented graphical results, it can be observed that the zones where the velocities of both
degrees of freedom are approximately equal depend on the value of the constant force. Substantial
dependence of the travelled distance from the value of the constant force is also seen.

The obtained results are used in the process of design of mechanisms of the proposed type.
Mechanisms of the proposed type can be used in elements of manipulators and robots, including pipe
robots and other devices used in agricultural engineering.
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