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Abstract 

 
Mechanism for transformation of vibrating motion into translational using the self-stopping device is proposed in 
the paper. Model of the investigated system is described. Numerical investigations for various parameters of the 
investigated system are performed and typical graphical relationships are presented. Dynamics of vibrational 
transportation is investigated, and the obtained results are used in the process of design of mechanisms of the 
proposed type. Mechanisms of the proposed type can be used in elements of manipulators and robots, including 
pipe robots and other devices used in agricultural engineering. 
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1. Introduction 

 
Mechanism for transformation of vibrating motion into translational using the self-stopping device 

is proposed in the paper. 
Model of the investigated system is described. Numerical investigations for various parameters of 

the investigated system are performed and typical graphical relationships are presented. Dynamics of 
vibrational transportation is investigated. 

The obtained results are used in the process of design of mechanisms of the proposed type. 
Mechanisms of the proposed type can be used in elements of manipulators and robots, including pipe 
robots and other devices used in agricultural engineering. 

The investigated element of agricultural machines is shown in Fig. 1. 
 

 
Fig. 1. The investigated element of agricultural machines 
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Vibrational motions are investigated in (Blekhman, 2018), (Kibirkštis et al., 2018), (Kurila, 
Ragulskienė, 1986), (Ragulskienė, 1974), (Ragulskis et al., 1965), (Spedicato, Notarstefano, 2017), 
(Sumbatov, Yunin, 2013). 

Dynamics of robots is investigated in (Glazunov, 2018), (Bolotnik et al., 2016), (Ragulskis et al., 
2020), (Ragulskis et al., 1987), (Ragulskis, Spruogis, Paškevičius et al., 2021), (Ragulskis, Spruogis, 
Pauliukas et al., 2021), (Bansevičius et al., 1985), (Spruogis et al., 2002). 

First model of the investigated system with two degrees of freedom is described. Then results of 
numerical investigation of steady state motions for various parameters of the system are presented and 
conclusions about dynamic behavior of the investigated system are made. 

 
2. Model of the investigated manipulator with vibrational drive 

 
First model in the dimensional form is described. Further x1 is the displacement of the vibrating 

mass and x2 is the displacement of the transported mass and the upper dot denotes differentiation with 
respect to the time t, that is: 

 

                                                                  .
d

dt
 (1) 

 
It is assumed that the vibrating mass is excited by a harmonic force. 
When the following condition is satisfied: 
 

1 2 , x x  (2) 
 
then dynamics of the system is described by the equations presented further. 

Dynamics of the exciting mass is described by the equation: 
 

12 1 1 1 1 0sin 0,      P m x Hx Cx F t f  (3) 
 
where m1 denotes the exciting mass, H denotes the coefficient of viscous friction, C denotes the 
coefficient of stiffness, F denotes the amplitude of harmonic excitation, ω denotes the frequency of 
harmonic excitation, 0f  denotes the coefficient of dry friction. 

Dynamics of the transported mass is described by the equation: 
 

21 2 2 2 0 0,     P m x Bx A f  (4) 
 
where m2 denotes the transported mass, B denotes the coefficient of viscous friction, A denotes the 
constant external force acting to the transported mass. 

When the following condition is satisfied: 
 

1 2 , x x  (5) 
 
then dynamics of the investigated system is described by the equation: 

 

12 21 1 1 2 2 1 2 1 sin 0.           P P m x m x Hx Bx Cx F t A  (6) 
 

The equations are transformed to non-dimensional form by introducing the following notations: 
 

2 0 2
0

1 11 1

,  ,  ,  ,  ,  ,  ,  ,  ,  .
  


         

f mC d F A H B
p pt ' f f a h b

m d C C C m pCm Cm
 (7) 

 
Thus, in non-dimensional parameters dynamics of the investigated system is described by the 

equations presented further. 
When the following condition is satisfied: 
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1 2 , x x  (8) 
 
then dynamics of the system is described by the equations: 

 

12
1 1 1 0sin 0,      

P
x hx x f f

C
 (9) 

21
2 2 0 0.      

P
x bx a f

C
 (10) 

 
When the following condition is satisfied: 
 

1 2 , x x  (11) 
 
then dynamics of the investigated system is described by the equation: 

 

12 21
1 2 1 2 1 sin 0.            

P P
x x hx bx x f a

C C
 (12) 

 
Numerical integration of the equations of motion is performed by using the Newmark constant 

average acceleration procedure. 
 

3. Investigation of steady state dynamics of the manipulator with vibrational drive 
 

The following parameters of the investigated dynamical system are assumed: 
 

01,  1,  0.1,  0.5,  1,  0.1.      f h f b  (13) 
 
Zero initial conditions are assumed: 
 

       1 1 2 20 0,  0 0,  0 0,  0 0.    x x x x  (14) 
 
Results for three values of the constant force are presented: 
 

0,a  (15) 
0.2, a  (16) 

0.2,a  (17) 
 
thus, investigations are performed for the case when there is no constant force, when the value of the 
constant force is negative and when the value of the constant force is positive. 

 
3.1. Results of investigations when there is no constant force 

 
Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first 

degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional 
velocity of the second degree of freedom as functions of non-dimensional time are presented in Fig. 2. 

Non-dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are presented in Fig. 3. 

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented 
in Fig. 4. 

Phase trajectory of relative motion is presented in Fig. 5. 
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a) Non-dimensional displacement of the first degree 

of freedom as function of non-dimensional time 
b) Non-dimensional velocity of the first degree of 

freedom as function of non-dimensional time 

  
c) Non-dimensional displacement of the second 

degree of freedom as function of non-dimensional 
time 

d) Non-dimensional velocity of the second degree of 
freedom as function of non-dimensional time 

Fig. 2. Dynamics of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0       f h f b a  

 

  
a) Non-dimensional relative displacement as function 

of non-dimensional time 
b) Non-dimensional relative velocity as function of 

non-dimensional time 
Fig. 3. Relative motions of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0       f h f b a  

 
3.2. Results of investigations when the constant force is negative 

 
Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first 

degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional 
velocity of the second degree of freedom as functions of non-dimensional time are presented in Fig. 6. 

Non-dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are presented in Fig. 7. 

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented 
in Fig. 8. 

Phase trajectory of relative motion is presented in Fig. 9. 
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a) Phase trajectory of the first degree of freedom b) Phase trajectory of the second degree of freedom 

Fig. 4. Phase trajectories of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0       f h f b a  

 

 
Fig. 5. Phase trajectory of relative motion of the investigated system for 

01,  1,  0.1,  0.5,  1,  0.1,  0       f h f b a  
 

  
a) Non-dimensional displacement of the first degree 

of freedom as function of non-dimensional time 
b) Non-dimensional velocity of the first degree of 

freedom as function of non-dimensional time 

  
c) Non-dimensional displacement of the second 

degree of freedom as function of non-dimensional 
time 

d) Non-dimensional velocity of the second degree of 
freedom as function of non-dimensional time 

Fig. 6. Dynamics of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0.2        f h f b a  
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a) Non-dimensional relative displacement as function 

of non-dimensional time 
b) Non-dimensional relative velocity as function of 

non-dimensional time 
Fig. 7. Relative motions of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0.2        f h f b a  

 

  
a) Phase trajectory of the first degree of freedom b) Phase trajectory of the second degree of freedom 

Fig. 8. Phase trajectories of the investigated system for 

01,  1,  0.1,  0.5,  1,  0.1,  0.2        f h f b a  

 

 
Fig. 9. Phase trajectory of relative motion of the investigated system for 

01,  1,  0.1,  0.5,  1,  0.1,  0.2        f h f b a  

 
3.3. Results of investigations when the constant force is positive 

 
Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first 

degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional 
velocity of the second degree of freedom as functions of non-dimensional time are presented in Fig. 
10. 

Non-dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are presented in Fig. 11. 

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented 
in Fig. 12. 
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a) Non-dimensional displacement of the first degree 

of freedom as function of non-dimensional time 
b) Non-dimensional velocity of the first degree of 

freedom as function of non-dimensional time 

  
c) Non-dimensional displacement of the second 

degree of freedom as function of non-dimensional 
time 

d) Non-dimensional velocity of the second degree of 
freedom as function of non-dimensional time 

Fig. 10. Dynamics of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0.2       f h f b a  
 

  
a) Non-dimensional relative displacement as function 

of non-dimensional time 
b) Non-dimensional relative velocity as function of 

non-dimensional time 
Fig. 11. Relative motions of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0.2       f h f b a  

 
Phase trajectory of relative motion is presented in Fig. 13. 

 

  
a) Phase trajectory of the first degree of freedom b) Phase trajectory of the second degree of freedom 

Fig. 12. Phase trajectories of the investigated system for 01,  1,  0.1,  0.5,  1,  0.1,  0.2       f h f b a  
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From the presented graphical results, it can be observed that the zones where the velocities of both 
degrees of freedom are approximately equal depend on the value of the constant force. Substantial 
dependence of the distance travelled by the second degree of freedom from the value of the constant 
force is also seen. 

 

 
Fig. 13. Phase trajectory of relative motion of the investigated system for 

01,  1,  0.1,  0.5,  1,  0.1,  0.2       f h f b a  

 
4. Investigation of travelled distance in steady state regime of motion as function of frequency of 

excitation 
 

The travelled distance of the second degree of freedom during a period of excitation in steady state 
regime of motion as function of frequency of excitation for the three values of the constant external 
force is presented in Fig. 14. 

From the presented results optimal frequency of excitation corresponding to maximum value of the 
travelled distance is determined. 

 

  
a) Constant force is equal to zero b) Constant force is negative 

 
c) Constant force is positive 

Fig. 14. Travelled distance during a period of excitation in steady state regime of motion as function of 
frequency of excitation 

 
 
 
 



 9

5. Conclusions 
 

Mechanism for transformation of vibrating motion into translational using the self-stopping device 
is proposed. Model of the investigated system is presented as well as numerical investigations for 
various parameters of the system are performed and graphical relationships for typical parameters of 
the investigated system are presented. Dynamics of precise vibrational transportation is investigated. 

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first 
degree of freedom, non-dimensional displacement of the second degree of freedom, non-dimensional 
velocity of the second degree of freedom as functions of non-dimensional time are presented. Non-
dimensional relative displacement and non-dimensional relative velocity as functions of non-
dimensional time are also investigated. Phase trajectories of the first degree of freedom and of the 
second degree of freedom are presented. Phase trajectory of relative motion is also investigated. 
Investigations are performed for the case when there is no constant force, when the constant force is 
negative and when the constant force is positive. 

From the presented graphical results, it can be observed that the zones where the velocities of both 
degrees of freedom are approximately equal depend on the value of the constant force. Substantial 
dependence of the travelled distance from the value of the constant force is also seen. 

The obtained results are used in the process of design of mechanisms of the proposed type. 
Mechanisms of the proposed type can be used in elements of manipulators and robots, including pipe 
robots and other devices used in agricultural engineering. 
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